Evaluate
\frac{25}{13}\approx 1.923076923
Factor
\frac{5 ^ {2}}{13} = 1\frac{12}{13} = 1.9230769230769231
Share
Copied to clipboard
\begin{array}{l}\phantom{52)}\phantom{1}\\52\overline{)100}\\\end{array}
Use the 1^{st} digit 1 from dividend 100
\begin{array}{l}\phantom{52)}0\phantom{2}\\52\overline{)100}\\\end{array}
Since 1 is less than 52, use the next digit 0 from dividend 100 and add 0 to the quotient
\begin{array}{l}\phantom{52)}0\phantom{3}\\52\overline{)100}\\\end{array}
Use the 2^{nd} digit 0 from dividend 100
\begin{array}{l}\phantom{52)}00\phantom{4}\\52\overline{)100}\\\end{array}
Since 10 is less than 52, use the next digit 0 from dividend 100 and add 0 to the quotient
\begin{array}{l}\phantom{52)}00\phantom{5}\\52\overline{)100}\\\end{array}
Use the 3^{rd} digit 0 from dividend 100
\begin{array}{l}\phantom{52)}001\phantom{6}\\52\overline{)100}\\\phantom{52)}\underline{\phantom{9}52\phantom{}}\\\phantom{52)9}48\\\end{array}
Find closest multiple of 52 to 100. We see that 1 \times 52 = 52 is the nearest. Now subtract 52 from 100 to get reminder 48. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }48
Since 48 is less than 52, stop the division. The reminder is 48. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}