Evaluate
\frac{100}{49}\approx 2.040816327
Factor
\frac{2 ^ {2} \cdot 5 ^ {2}}{7 ^ {2}} = 2\frac{2}{49} = 2.0408163265306123
Share
Copied to clipboard
\begin{array}{l}\phantom{49)}\phantom{1}\\49\overline{)100}\\\end{array}
Use the 1^{st} digit 1 from dividend 100
\begin{array}{l}\phantom{49)}0\phantom{2}\\49\overline{)100}\\\end{array}
Since 1 is less than 49, use the next digit 0 from dividend 100 and add 0 to the quotient
\begin{array}{l}\phantom{49)}0\phantom{3}\\49\overline{)100}\\\end{array}
Use the 2^{nd} digit 0 from dividend 100
\begin{array}{l}\phantom{49)}00\phantom{4}\\49\overline{)100}\\\end{array}
Since 10 is less than 49, use the next digit 0 from dividend 100 and add 0 to the quotient
\begin{array}{l}\phantom{49)}00\phantom{5}\\49\overline{)100}\\\end{array}
Use the 3^{rd} digit 0 from dividend 100
\begin{array}{l}\phantom{49)}002\phantom{6}\\49\overline{)100}\\\phantom{49)}\underline{\phantom{9}98\phantom{}}\\\phantom{49)99}2\\\end{array}
Find closest multiple of 49 to 100. We see that 2 \times 49 = 98 is the nearest. Now subtract 98 from 100 to get reminder 2. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }2
Since 2 is less than 49, stop the division. The reminder is 2. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}