Evaluate
\frac{100}{21}\approx 4.761904762
Factor
\frac{2 ^ {2} \cdot 5 ^ {2}}{3 \cdot 7} = 4\frac{16}{21} = 4.761904761904762
Share
Copied to clipboard
\begin{array}{l}\phantom{21)}\phantom{1}\\21\overline{)100}\\\end{array}
Use the 1^{st} digit 1 from dividend 100
\begin{array}{l}\phantom{21)}0\phantom{2}\\21\overline{)100}\\\end{array}
Since 1 is less than 21, use the next digit 0 from dividend 100 and add 0 to the quotient
\begin{array}{l}\phantom{21)}0\phantom{3}\\21\overline{)100}\\\end{array}
Use the 2^{nd} digit 0 from dividend 100
\begin{array}{l}\phantom{21)}00\phantom{4}\\21\overline{)100}\\\end{array}
Since 10 is less than 21, use the next digit 0 from dividend 100 and add 0 to the quotient
\begin{array}{l}\phantom{21)}00\phantom{5}\\21\overline{)100}\\\end{array}
Use the 3^{rd} digit 0 from dividend 100
\begin{array}{l}\phantom{21)}004\phantom{6}\\21\overline{)100}\\\phantom{21)}\underline{\phantom{9}84\phantom{}}\\\phantom{21)9}16\\\end{array}
Find closest multiple of 21 to 100. We see that 4 \times 21 = 84 is the nearest. Now subtract 84 from 100 to get reminder 16. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }16
Since 16 is less than 21, stop the division. The reminder is 16. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}