Solve for R
R=-\frac{4\left(3x-10\right)}{3x+2}
x\neq -\frac{2}{3}
Solve for x
x=-\frac{2\left(R-20\right)}{3\left(R+4\right)}
R\neq -4
Graph
Share
Copied to clipboard
400=24x\left(5+\frac{5R}{4}\right)+20R
Multiply both sides of the equation by 4.
400=120x+24x\times \frac{5R}{4}+20R
Use the distributive property to multiply 24x by 5+\frac{5R}{4}.
400=120x+6\times 5Rx+20R
Cancel out 4, the greatest common factor in 24 and 4.
400=120x+30Rx+20R
Multiply 6 and 5 to get 30.
120x+30Rx+20R=400
Swap sides so that all variable terms are on the left hand side.
30Rx+20R=400-120x
Subtract 120x from both sides.
\left(30x+20\right)R=400-120x
Combine all terms containing R.
\frac{\left(30x+20\right)R}{30x+20}=\frac{400-120x}{30x+20}
Divide both sides by 30x+20.
R=\frac{400-120x}{30x+20}
Dividing by 30x+20 undoes the multiplication by 30x+20.
R=\frac{4\left(10-3x\right)}{3x+2}
Divide 400-120x by 30x+20.
400=24x\left(5+\frac{5R}{4}\right)+20R
Multiply both sides of the equation by 4.
400=120x+24x\times \frac{5R}{4}+20R
Use the distributive property to multiply 24x by 5+\frac{5R}{4}.
400=120x+6\times 5Rx+20R
Cancel out 4, the greatest common factor in 24 and 4.
400=120x+30Rx+20R
Multiply 6 and 5 to get 30.
120x+30Rx+20R=400
Swap sides so that all variable terms are on the left hand side.
120x+30Rx=400-20R
Subtract 20R from both sides.
\left(120+30R\right)x=400-20R
Combine all terms containing x.
\left(30R+120\right)x=400-20R
The equation is in standard form.
\frac{\left(30R+120\right)x}{30R+120}=\frac{400-20R}{30R+120}
Divide both sides by 120+30R.
x=\frac{400-20R}{30R+120}
Dividing by 120+30R undoes the multiplication by 120+30R.
x=\frac{2\left(20-R\right)}{3\left(R+4\right)}
Divide 400-20R by 120+30R.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}