Solve for t
t=\log_{0.71}\left(\frac{4}{13}\right)\approx 3.441425832
Share
Copied to clipboard
\frac{100}{325}=\left(1-0.29\right)^{t}
Divide both sides by 325.
\frac{4}{13}=\left(1-0.29\right)^{t}
Reduce the fraction \frac{100}{325} to lowest terms by extracting and canceling out 25.
\frac{4}{13}=0.71^{t}
Subtract 0.29 from 1 to get 0.71.
0.71^{t}=\frac{4}{13}
Swap sides so that all variable terms are on the left hand side.
\log(0.71^{t})=\log(\frac{4}{13})
Take the logarithm of both sides of the equation.
t\log(0.71)=\log(\frac{4}{13})
The logarithm of a number raised to a power is the power times the logarithm of the number.
t=\frac{\log(\frac{4}{13})}{\log(0.71)}
Divide both sides by \log(0.71).
t=\log_{0.71}\left(\frac{4}{13}\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}