Solve for t
t = \frac{50 \sqrt{2} - 10}{49} \approx 1.238993431
t=\frac{-50\sqrt{2}-10}{49}\approx -1.647156696
Share
Copied to clipboard
100=20t+49t^{2}
Multiply \frac{1}{2} and 98 to get 49.
20t+49t^{2}=100
Swap sides so that all variable terms are on the left hand side.
20t+49t^{2}-100=0
Subtract 100 from both sides.
49t^{2}+20t-100=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-20±\sqrt{20^{2}-4\times 49\left(-100\right)}}{2\times 49}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 49 for a, 20 for b, and -100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-20±\sqrt{400-4\times 49\left(-100\right)}}{2\times 49}
Square 20.
t=\frac{-20±\sqrt{400-196\left(-100\right)}}{2\times 49}
Multiply -4 times 49.
t=\frac{-20±\sqrt{400+19600}}{2\times 49}
Multiply -196 times -100.
t=\frac{-20±\sqrt{20000}}{2\times 49}
Add 400 to 19600.
t=\frac{-20±100\sqrt{2}}{2\times 49}
Take the square root of 20000.
t=\frac{-20±100\sqrt{2}}{98}
Multiply 2 times 49.
t=\frac{100\sqrt{2}-20}{98}
Now solve the equation t=\frac{-20±100\sqrt{2}}{98} when ± is plus. Add -20 to 100\sqrt{2}.
t=\frac{50\sqrt{2}-10}{49}
Divide -20+100\sqrt{2} by 98.
t=\frac{-100\sqrt{2}-20}{98}
Now solve the equation t=\frac{-20±100\sqrt{2}}{98} when ± is minus. Subtract 100\sqrt{2} from -20.
t=\frac{-50\sqrt{2}-10}{49}
Divide -20-100\sqrt{2} by 98.
t=\frac{50\sqrt{2}-10}{49} t=\frac{-50\sqrt{2}-10}{49}
The equation is now solved.
100=20t+49t^{2}
Multiply \frac{1}{2} and 98 to get 49.
20t+49t^{2}=100
Swap sides so that all variable terms are on the left hand side.
49t^{2}+20t=100
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{49t^{2}+20t}{49}=\frac{100}{49}
Divide both sides by 49.
t^{2}+\frac{20}{49}t=\frac{100}{49}
Dividing by 49 undoes the multiplication by 49.
t^{2}+\frac{20}{49}t+\left(\frac{10}{49}\right)^{2}=\frac{100}{49}+\left(\frac{10}{49}\right)^{2}
Divide \frac{20}{49}, the coefficient of the x term, by 2 to get \frac{10}{49}. Then add the square of \frac{10}{49} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+\frac{20}{49}t+\frac{100}{2401}=\frac{100}{49}+\frac{100}{2401}
Square \frac{10}{49} by squaring both the numerator and the denominator of the fraction.
t^{2}+\frac{20}{49}t+\frac{100}{2401}=\frac{5000}{2401}
Add \frac{100}{49} to \frac{100}{2401} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t+\frac{10}{49}\right)^{2}=\frac{5000}{2401}
Factor t^{2}+\frac{20}{49}t+\frac{100}{2401}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{10}{49}\right)^{2}}=\sqrt{\frac{5000}{2401}}
Take the square root of both sides of the equation.
t+\frac{10}{49}=\frac{50\sqrt{2}}{49} t+\frac{10}{49}=-\frac{50\sqrt{2}}{49}
Simplify.
t=\frac{50\sqrt{2}-10}{49} t=\frac{-50\sqrt{2}-10}{49}
Subtract \frac{10}{49} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}