Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

100=20t+\frac{49}{10}t^{2}
Multiply \frac{1}{2} and 9.8 to get \frac{49}{10}.
20t+\frac{49}{10}t^{2}=100
Swap sides so that all variable terms are on the left hand side.
20t+\frac{49}{10}t^{2}-100=0
Subtract 100 from both sides.
\frac{49}{10}t^{2}+20t-100=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-20±\sqrt{20^{2}-4\times \frac{49}{10}\left(-100\right)}}{2\times \frac{49}{10}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{49}{10} for a, 20 for b, and -100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-20±\sqrt{400-4\times \frac{49}{10}\left(-100\right)}}{2\times \frac{49}{10}}
Square 20.
t=\frac{-20±\sqrt{400-\frac{98}{5}\left(-100\right)}}{2\times \frac{49}{10}}
Multiply -4 times \frac{49}{10}.
t=\frac{-20±\sqrt{400+1960}}{2\times \frac{49}{10}}
Multiply -\frac{98}{5} times -100.
t=\frac{-20±\sqrt{2360}}{2\times \frac{49}{10}}
Add 400 to 1960.
t=\frac{-20±2\sqrt{590}}{2\times \frac{49}{10}}
Take the square root of 2360.
t=\frac{-20±2\sqrt{590}}{\frac{49}{5}}
Multiply 2 times \frac{49}{10}.
t=\frac{2\sqrt{590}-20}{\frac{49}{5}}
Now solve the equation t=\frac{-20±2\sqrt{590}}{\frac{49}{5}} when ± is plus. Add -20 to 2\sqrt{590}.
t=\frac{10\sqrt{590}-100}{49}
Divide -20+2\sqrt{590} by \frac{49}{5} by multiplying -20+2\sqrt{590} by the reciprocal of \frac{49}{5}.
t=\frac{-2\sqrt{590}-20}{\frac{49}{5}}
Now solve the equation t=\frac{-20±2\sqrt{590}}{\frac{49}{5}} when ± is minus. Subtract 2\sqrt{590} from -20.
t=\frac{-10\sqrt{590}-100}{49}
Divide -20-2\sqrt{590} by \frac{49}{5} by multiplying -20-2\sqrt{590} by the reciprocal of \frac{49}{5}.
t=\frac{10\sqrt{590}-100}{49} t=\frac{-10\sqrt{590}-100}{49}
The equation is now solved.
100=20t+\frac{49}{10}t^{2}
Multiply \frac{1}{2} and 9.8 to get \frac{49}{10}.
20t+\frac{49}{10}t^{2}=100
Swap sides so that all variable terms are on the left hand side.
\frac{49}{10}t^{2}+20t=100
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{49}{10}t^{2}+20t}{\frac{49}{10}}=\frac{100}{\frac{49}{10}}
Divide both sides of the equation by \frac{49}{10}, which is the same as multiplying both sides by the reciprocal of the fraction.
t^{2}+\frac{20}{\frac{49}{10}}t=\frac{100}{\frac{49}{10}}
Dividing by \frac{49}{10} undoes the multiplication by \frac{49}{10}.
t^{2}+\frac{200}{49}t=\frac{100}{\frac{49}{10}}
Divide 20 by \frac{49}{10} by multiplying 20 by the reciprocal of \frac{49}{10}.
t^{2}+\frac{200}{49}t=\frac{1000}{49}
Divide 100 by \frac{49}{10} by multiplying 100 by the reciprocal of \frac{49}{10}.
t^{2}+\frac{200}{49}t+\left(\frac{100}{49}\right)^{2}=\frac{1000}{49}+\left(\frac{100}{49}\right)^{2}
Divide \frac{200}{49}, the coefficient of the x term, by 2 to get \frac{100}{49}. Then add the square of \frac{100}{49} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+\frac{200}{49}t+\frac{10000}{2401}=\frac{1000}{49}+\frac{10000}{2401}
Square \frac{100}{49} by squaring both the numerator and the denominator of the fraction.
t^{2}+\frac{200}{49}t+\frac{10000}{2401}=\frac{59000}{2401}
Add \frac{1000}{49} to \frac{10000}{2401} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t+\frac{100}{49}\right)^{2}=\frac{59000}{2401}
Factor t^{2}+\frac{200}{49}t+\frac{10000}{2401}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{100}{49}\right)^{2}}=\sqrt{\frac{59000}{2401}}
Take the square root of both sides of the equation.
t+\frac{100}{49}=\frac{10\sqrt{590}}{49} t+\frac{100}{49}=-\frac{10\sqrt{590}}{49}
Simplify.
t=\frac{10\sqrt{590}-100}{49} t=\frac{-10\sqrt{590}-100}{49}
Subtract \frac{100}{49} from both sides of the equation.