Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

2t+5t^{2}=100
Swap sides so that all variable terms are on the left hand side.
2t+5t^{2}-100=0
Subtract 100 from both sides.
5t^{2}+2t-100=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-2±\sqrt{2^{2}-4\times 5\left(-100\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 2 for b, and -100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-2±\sqrt{4-4\times 5\left(-100\right)}}{2\times 5}
Square 2.
t=\frac{-2±\sqrt{4-20\left(-100\right)}}{2\times 5}
Multiply -4 times 5.
t=\frac{-2±\sqrt{4+2000}}{2\times 5}
Multiply -20 times -100.
t=\frac{-2±\sqrt{2004}}{2\times 5}
Add 4 to 2000.
t=\frac{-2±2\sqrt{501}}{2\times 5}
Take the square root of 2004.
t=\frac{-2±2\sqrt{501}}{10}
Multiply 2 times 5.
t=\frac{2\sqrt{501}-2}{10}
Now solve the equation t=\frac{-2±2\sqrt{501}}{10} when ± is plus. Add -2 to 2\sqrt{501}.
t=\frac{\sqrt{501}-1}{5}
Divide -2+2\sqrt{501} by 10.
t=\frac{-2\sqrt{501}-2}{10}
Now solve the equation t=\frac{-2±2\sqrt{501}}{10} when ± is minus. Subtract 2\sqrt{501} from -2.
t=\frac{-\sqrt{501}-1}{5}
Divide -2-2\sqrt{501} by 10.
t=\frac{\sqrt{501}-1}{5} t=\frac{-\sqrt{501}-1}{5}
The equation is now solved.
2t+5t^{2}=100
Swap sides so that all variable terms are on the left hand side.
5t^{2}+2t=100
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{5t^{2}+2t}{5}=\frac{100}{5}
Divide both sides by 5.
t^{2}+\frac{2}{5}t=\frac{100}{5}
Dividing by 5 undoes the multiplication by 5.
t^{2}+\frac{2}{5}t=20
Divide 100 by 5.
t^{2}+\frac{2}{5}t+\left(\frac{1}{5}\right)^{2}=20+\left(\frac{1}{5}\right)^{2}
Divide \frac{2}{5}, the coefficient of the x term, by 2 to get \frac{1}{5}. Then add the square of \frac{1}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+\frac{2}{5}t+\frac{1}{25}=20+\frac{1}{25}
Square \frac{1}{5} by squaring both the numerator and the denominator of the fraction.
t^{2}+\frac{2}{5}t+\frac{1}{25}=\frac{501}{25}
Add 20 to \frac{1}{25}.
\left(t+\frac{1}{5}\right)^{2}=\frac{501}{25}
Factor t^{2}+\frac{2}{5}t+\frac{1}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{1}{5}\right)^{2}}=\sqrt{\frac{501}{25}}
Take the square root of both sides of the equation.
t+\frac{1}{5}=\frac{\sqrt{501}}{5} t+\frac{1}{5}=-\frac{\sqrt{501}}{5}
Simplify.
t=\frac{\sqrt{501}-1}{5} t=\frac{-\sqrt{501}-1}{5}
Subtract \frac{1}{5} from both sides of the equation.