100 = \frac { n [ 2 \times 23 + ( n - 1 ) x - 3 } { 2 }
Solve for x
x=-\frac{43n-200}{n\left(n-1\right)}
n\neq 1\text{ and }n\neq 0
Solve for n (complex solution)
\left\{\begin{matrix}n=\frac{\sqrt{x^{2}+714x+1849}+x-43}{2x}\text{; }n=\frac{-\sqrt{x^{2}+714x+1849}+x-43}{2x}\text{, }&x\neq 0\\n=\frac{200}{43}\approx 4.651162791\text{, }&x=0\end{matrix}\right.
Solve for n
\left\{\begin{matrix}n=\frac{\sqrt{x^{2}+714x+1849}+x-43}{2x}\text{; }n=\frac{-\sqrt{x^{2}+714x+1849}+x-43}{2x}\text{, }&x\leq -20\sqrt{314}-357\text{ or }\left(x\neq 0\text{ and }x\geq 20\sqrt{314}-357\right)\\n=\frac{200}{43}\approx 4.651162791\text{, }&x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
100\times 2=n\left(2\times 23+\left(n-1\right)x-3\right)
Multiply both sides by 2.
200=n\left(2\times 23+\left(n-1\right)x-3\right)
Multiply 100 and 2 to get 200.
200=n\left(2\times 23+nx-x-3\right)
Use the distributive property to multiply n-1 by x.
200=n\left(2\times 23\right)+xn^{2}-nx-3n
Use the distributive property to multiply n by 2\times 23+nx-x-3.
n\left(2\times 23\right)+xn^{2}-nx-3n=200
Swap sides so that all variable terms are on the left hand side.
xn^{2}-nx-3n=200-n\left(2\times 23\right)
Subtract n\left(2\times 23\right) from both sides.
xn^{2}-nx=200-n\left(2\times 23\right)+3n
Add 3n to both sides.
xn^{2}-nx=-n\left(2\times 23\right)+3n+200
Reorder the terms.
\left(n^{2}-n\right)x=-n\left(2\times 23\right)+3n+200
Combine all terms containing x.
\left(n^{2}-n\right)x=200-43n
The equation is in standard form.
\frac{\left(n^{2}-n\right)x}{n^{2}-n}=\frac{200-43n}{n^{2}-n}
Divide both sides by n^{2}-n.
x=\frac{200-43n}{n^{2}-n}
Dividing by n^{2}-n undoes the multiplication by n^{2}-n.
x=\frac{200-43n}{n\left(n-1\right)}
Divide -43n+200 by n^{2}-n.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}