Skip to main content
Solve for V
Tick mark Image

Similar Problems from Web Search

Share

100=\frac{1}{160}V^{2}+\frac{6}{3}
Divide 1 by \frac{3}{6} by multiplying 1 by the reciprocal of \frac{3}{6}.
100=\frac{1}{160}V^{2}+2
Divide 6 by 3 to get 2.
\frac{1}{160}V^{2}+2=100
Swap sides so that all variable terms are on the left hand side.
\frac{1}{160}V^{2}=100-2
Subtract 2 from both sides.
\frac{1}{160}V^{2}=98
Subtract 2 from 100 to get 98.
V^{2}=98\times 160
Multiply both sides by 160, the reciprocal of \frac{1}{160}.
V^{2}=15680
Multiply 98 and 160 to get 15680.
V=56\sqrt{5} V=-56\sqrt{5}
Take the square root of both sides of the equation.
100=\frac{1}{160}V^{2}+\frac{6}{3}
Divide 1 by \frac{3}{6} by multiplying 1 by the reciprocal of \frac{3}{6}.
100=\frac{1}{160}V^{2}+2
Divide 6 by 3 to get 2.
\frac{1}{160}V^{2}+2=100
Swap sides so that all variable terms are on the left hand side.
\frac{1}{160}V^{2}+2-100=0
Subtract 100 from both sides.
\frac{1}{160}V^{2}-98=0
Subtract 100 from 2 to get -98.
V=\frac{0±\sqrt{0^{2}-4\times \frac{1}{160}\left(-98\right)}}{2\times \frac{1}{160}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{160} for a, 0 for b, and -98 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
V=\frac{0±\sqrt{-4\times \frac{1}{160}\left(-98\right)}}{2\times \frac{1}{160}}
Square 0.
V=\frac{0±\sqrt{-\frac{1}{40}\left(-98\right)}}{2\times \frac{1}{160}}
Multiply -4 times \frac{1}{160}.
V=\frac{0±\sqrt{\frac{49}{20}}}{2\times \frac{1}{160}}
Multiply -\frac{1}{40} times -98.
V=\frac{0±\frac{7\sqrt{5}}{10}}{2\times \frac{1}{160}}
Take the square root of \frac{49}{20}.
V=\frac{0±\frac{7\sqrt{5}}{10}}{\frac{1}{80}}
Multiply 2 times \frac{1}{160}.
V=56\sqrt{5}
Now solve the equation V=\frac{0±\frac{7\sqrt{5}}{10}}{\frac{1}{80}} when ± is plus.
V=-56\sqrt{5}
Now solve the equation V=\frac{0±\frac{7\sqrt{5}}{10}}{\frac{1}{80}} when ± is minus.
V=56\sqrt{5} V=-56\sqrt{5}
The equation is now solved.