Solve for r
r=\frac{-\sqrt{176801}-399}{200}\approx -4.09738555
r=\frac{\sqrt{176801}-399}{200}\approx 0.10738555
Share
Copied to clipboard
100=\frac{0.5}{1+\frac{r}{2}}+\frac{0.5}{1+2\times \frac{r}{2}+\left(\frac{r}{2}\right)^{2}}+\frac{110}{\left(1+\frac{r}{2}\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\frac{r}{2}\right)^{2}.
100=\frac{0.5}{1+\frac{r}{2}}+\frac{0.5}{1+\frac{2r}{2}+\left(\frac{r}{2}\right)^{2}}+\frac{110}{\left(1+\frac{r}{2}\right)^{2}}
Express 2\times \frac{r}{2} as a single fraction.
100=\frac{0.5}{1+\frac{r}{2}}+\frac{0.5}{1+r+\left(\frac{r}{2}\right)^{2}}+\frac{110}{\left(1+\frac{r}{2}\right)^{2}}
Cancel out 2 and 2.
100=\frac{0.5}{1+\frac{r}{2}}+\frac{0.5}{1+r+\frac{r^{2}}{2^{2}}}+\frac{110}{\left(1+\frac{r}{2}\right)^{2}}
To raise \frac{r}{2} to a power, raise both numerator and denominator to the power and then divide.
100=\frac{0.5}{1+\frac{r}{2}}+\frac{0.5}{\frac{\left(1+r\right)\times 2^{2}}{2^{2}}+\frac{r^{2}}{2^{2}}}+\frac{110}{\left(1+\frac{r}{2}\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1+r times \frac{2^{2}}{2^{2}}.
100=\frac{0.5}{1+\frac{r}{2}}+\frac{0.5}{\frac{\left(1+r\right)\times 2^{2}+r^{2}}{2^{2}}}+\frac{110}{\left(1+\frac{r}{2}\right)^{2}}
Since \frac{\left(1+r\right)\times 2^{2}}{2^{2}} and \frac{r^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
100=\frac{0.5}{1+\frac{r}{2}}+\frac{0.5}{\frac{4+4r+r^{2}}{2^{2}}}+\frac{110}{\left(1+\frac{r}{2}\right)^{2}}
Do the multiplications in \left(1+r\right)\times 2^{2}+r^{2}.
100=\frac{0.5}{1+\frac{r}{2}}+\frac{0.5\times 2^{2}}{4+4r+r^{2}}+\frac{110}{\left(1+\frac{r}{2}\right)^{2}}
Divide 0.5 by \frac{4+4r+r^{2}}{2^{2}} by multiplying 0.5 by the reciprocal of \frac{4+4r+r^{2}}{2^{2}}.
100=\frac{0.5}{1+\frac{r}{2}}+\frac{0.5\times 4}{4+4r+r^{2}}+\frac{110}{\left(1+\frac{r}{2}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
100=\frac{0.5}{1+\frac{r}{2}}+\frac{2}{4+4r+r^{2}}+\frac{110}{\left(1+\frac{r}{2}\right)^{2}}
Multiply 0.5 and 4 to get 2.
100=\frac{0.5}{1+\frac{r}{2}}+\frac{2}{4+4r+r^{2}}+\frac{110}{1+2\times \frac{r}{2}+\left(\frac{r}{2}\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\frac{r}{2}\right)^{2}.
100=\frac{0.5}{1+\frac{r}{2}}+\frac{2}{4+4r+r^{2}}+\frac{110}{1+\frac{2r}{2}+\left(\frac{r}{2}\right)^{2}}
Express 2\times \frac{r}{2} as a single fraction.
100=\frac{0.5}{1+\frac{r}{2}}+\frac{2}{4+4r+r^{2}}+\frac{110}{1+r+\left(\frac{r}{2}\right)^{2}}
Cancel out 2 and 2.
100=\frac{0.5}{1+\frac{r}{2}}+\frac{2}{4+4r+r^{2}}+\frac{110}{1+r+\frac{r^{2}}{2^{2}}}
To raise \frac{r}{2} to a power, raise both numerator and denominator to the power and then divide.
100=\frac{0.5}{1+\frac{r}{2}}+\frac{2}{4+4r+r^{2}}+\frac{110}{\frac{\left(1+r\right)\times 2^{2}}{2^{2}}+\frac{r^{2}}{2^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1+r times \frac{2^{2}}{2^{2}}.
100=\frac{0.5}{1+\frac{r}{2}}+\frac{2}{4+4r+r^{2}}+\frac{110}{\frac{\left(1+r\right)\times 2^{2}+r^{2}}{2^{2}}}
Since \frac{\left(1+r\right)\times 2^{2}}{2^{2}} and \frac{r^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
100=\frac{0.5}{1+\frac{r}{2}}+\frac{2}{4+4r+r^{2}}+\frac{110}{\frac{4+4r+r^{2}}{2^{2}}}
Do the multiplications in \left(1+r\right)\times 2^{2}+r^{2}.
100=\frac{0.5}{1+\frac{r}{2}}+\frac{2}{4+4r+r^{2}}+\frac{110\times 2^{2}}{4+4r+r^{2}}
Divide 110 by \frac{4+4r+r^{2}}{2^{2}} by multiplying 110 by the reciprocal of \frac{4+4r+r^{2}}{2^{2}}.
100=\frac{0.5}{1+\frac{r}{2}}+\frac{2}{4+4r+r^{2}}+\frac{110\times 4}{4+4r+r^{2}}
Calculate 2 to the power of 2 and get 4.
100=\frac{0.5}{1+\frac{r}{2}}+\frac{2}{4+4r+r^{2}}+\frac{440}{4+4r+r^{2}}
Multiply 110 and 4 to get 440.
100=\frac{0.5}{1+\frac{r}{2}}+\frac{442}{4+4r+r^{2}}
Since \frac{2}{4+4r+r^{2}} and \frac{440}{4+4r+r^{2}} have the same denominator, add them by adding their numerators. Add 2 and 440 to get 442.
\frac{0.5}{1+\frac{r}{2}}+\frac{442}{4+4r+r^{2}}=100
Swap sides so that all variable terms are on the left hand side.
\frac{0.5}{1+\frac{r}{2}}+\frac{442}{4+4r+r^{2}}-100=0
Subtract 100 from both sides.
\frac{0.5}{1+\frac{r}{2}}+\frac{442}{\left(r+2\right)^{2}}-100=0
Factor 4+4r+r^{2}.
\frac{0.5}{1+\frac{r}{2}}+\frac{442}{\left(r+2\right)^{2}}-\frac{100\left(r+2\right)^{2}}{\left(r+2\right)^{2}}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply 100 times \frac{\left(r+2\right)^{2}}{\left(r+2\right)^{2}}.
\frac{0.5}{1+\frac{r}{2}}+\frac{442-100\left(r+2\right)^{2}}{\left(r+2\right)^{2}}=0
Since \frac{442}{\left(r+2\right)^{2}} and \frac{100\left(r+2\right)^{2}}{\left(r+2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{0.5}{1+\frac{r}{2}}+\frac{442-100r^{2}-400r-400}{\left(r+2\right)^{2}}=0
Do the multiplications in 442-100\left(r+2\right)^{2}.
\frac{0.5}{1+\frac{r}{2}}+\frac{42-100r^{2}-400r}{\left(r+2\right)^{2}}=0
Combine like terms in 442-100r^{2}-400r-400.
\left(2r+4\right)\times 0.5+42-100r^{2}-400r=0
Variable r cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by \left(r+2\right)^{2}.
-100r^{2}+0.5\left(2r+4\right)-400r+42=0
Reorder the terms.
-100r^{2}+r+2-400r+42=0
Use the distributive property to multiply 0.5 by 2r+4.
-100r^{2}-399r+2+42=0
Combine r and -400r to get -399r.
-100r^{2}-399r+44=0
Add 2 and 42 to get 44.
r=\frac{-\left(-399\right)±\sqrt{\left(-399\right)^{2}-4\left(-100\right)\times 44}}{2\left(-100\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -100 for a, -399 for b, and 44 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-\left(-399\right)±\sqrt{159201-4\left(-100\right)\times 44}}{2\left(-100\right)}
Square -399.
r=\frac{-\left(-399\right)±\sqrt{159201+400\times 44}}{2\left(-100\right)}
Multiply -4 times -100.
r=\frac{-\left(-399\right)±\sqrt{159201+17600}}{2\left(-100\right)}
Multiply 400 times 44.
r=\frac{-\left(-399\right)±\sqrt{176801}}{2\left(-100\right)}
Add 159201 to 17600.
r=\frac{399±\sqrt{176801}}{2\left(-100\right)}
The opposite of -399 is 399.
r=\frac{399±\sqrt{176801}}{-200}
Multiply 2 times -100.
r=\frac{\sqrt{176801}+399}{-200}
Now solve the equation r=\frac{399±\sqrt{176801}}{-200} when ± is plus. Add 399 to \sqrt{176801}.
r=\frac{-\sqrt{176801}-399}{200}
Divide 399+\sqrt{176801} by -200.
r=\frac{399-\sqrt{176801}}{-200}
Now solve the equation r=\frac{399±\sqrt{176801}}{-200} when ± is minus. Subtract \sqrt{176801} from 399.
r=\frac{\sqrt{176801}-399}{200}
Divide 399-\sqrt{176801} by -200.
r=\frac{-\sqrt{176801}-399}{200} r=\frac{\sqrt{176801}-399}{200}
The equation is now solved.
100=\frac{0.5}{1+\frac{r}{2}}+\frac{0.5}{1+2\times \frac{r}{2}+\left(\frac{r}{2}\right)^{2}}+\frac{110}{\left(1+\frac{r}{2}\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\frac{r}{2}\right)^{2}.
100=\frac{0.5}{1+\frac{r}{2}}+\frac{0.5}{1+\frac{2r}{2}+\left(\frac{r}{2}\right)^{2}}+\frac{110}{\left(1+\frac{r}{2}\right)^{2}}
Express 2\times \frac{r}{2} as a single fraction.
100=\frac{0.5}{1+\frac{r}{2}}+\frac{0.5}{1+r+\left(\frac{r}{2}\right)^{2}}+\frac{110}{\left(1+\frac{r}{2}\right)^{2}}
Cancel out 2 and 2.
100=\frac{0.5}{1+\frac{r}{2}}+\frac{0.5}{1+r+\frac{r^{2}}{2^{2}}}+\frac{110}{\left(1+\frac{r}{2}\right)^{2}}
To raise \frac{r}{2} to a power, raise both numerator and denominator to the power and then divide.
100=\frac{0.5}{1+\frac{r}{2}}+\frac{0.5}{\frac{\left(1+r\right)\times 2^{2}}{2^{2}}+\frac{r^{2}}{2^{2}}}+\frac{110}{\left(1+\frac{r}{2}\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1+r times \frac{2^{2}}{2^{2}}.
100=\frac{0.5}{1+\frac{r}{2}}+\frac{0.5}{\frac{\left(1+r\right)\times 2^{2}+r^{2}}{2^{2}}}+\frac{110}{\left(1+\frac{r}{2}\right)^{2}}
Since \frac{\left(1+r\right)\times 2^{2}}{2^{2}} and \frac{r^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
100=\frac{0.5}{1+\frac{r}{2}}+\frac{0.5}{\frac{4+4r+r^{2}}{2^{2}}}+\frac{110}{\left(1+\frac{r}{2}\right)^{2}}
Do the multiplications in \left(1+r\right)\times 2^{2}+r^{2}.
100=\frac{0.5}{1+\frac{r}{2}}+\frac{0.5\times 2^{2}}{4+4r+r^{2}}+\frac{110}{\left(1+\frac{r}{2}\right)^{2}}
Divide 0.5 by \frac{4+4r+r^{2}}{2^{2}} by multiplying 0.5 by the reciprocal of \frac{4+4r+r^{2}}{2^{2}}.
100=\frac{0.5}{1+\frac{r}{2}}+\frac{0.5\times 4}{4+4r+r^{2}}+\frac{110}{\left(1+\frac{r}{2}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
100=\frac{0.5}{1+\frac{r}{2}}+\frac{2}{4+4r+r^{2}}+\frac{110}{\left(1+\frac{r}{2}\right)^{2}}
Multiply 0.5 and 4 to get 2.
100=\frac{0.5}{1+\frac{r}{2}}+\frac{2}{4+4r+r^{2}}+\frac{110}{1+2\times \frac{r}{2}+\left(\frac{r}{2}\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\frac{r}{2}\right)^{2}.
100=\frac{0.5}{1+\frac{r}{2}}+\frac{2}{4+4r+r^{2}}+\frac{110}{1+\frac{2r}{2}+\left(\frac{r}{2}\right)^{2}}
Express 2\times \frac{r}{2} as a single fraction.
100=\frac{0.5}{1+\frac{r}{2}}+\frac{2}{4+4r+r^{2}}+\frac{110}{1+r+\left(\frac{r}{2}\right)^{2}}
Cancel out 2 and 2.
100=\frac{0.5}{1+\frac{r}{2}}+\frac{2}{4+4r+r^{2}}+\frac{110}{1+r+\frac{r^{2}}{2^{2}}}
To raise \frac{r}{2} to a power, raise both numerator and denominator to the power and then divide.
100=\frac{0.5}{1+\frac{r}{2}}+\frac{2}{4+4r+r^{2}}+\frac{110}{\frac{\left(1+r\right)\times 2^{2}}{2^{2}}+\frac{r^{2}}{2^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1+r times \frac{2^{2}}{2^{2}}.
100=\frac{0.5}{1+\frac{r}{2}}+\frac{2}{4+4r+r^{2}}+\frac{110}{\frac{\left(1+r\right)\times 2^{2}+r^{2}}{2^{2}}}
Since \frac{\left(1+r\right)\times 2^{2}}{2^{2}} and \frac{r^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
100=\frac{0.5}{1+\frac{r}{2}}+\frac{2}{4+4r+r^{2}}+\frac{110}{\frac{4+4r+r^{2}}{2^{2}}}
Do the multiplications in \left(1+r\right)\times 2^{2}+r^{2}.
100=\frac{0.5}{1+\frac{r}{2}}+\frac{2}{4+4r+r^{2}}+\frac{110\times 2^{2}}{4+4r+r^{2}}
Divide 110 by \frac{4+4r+r^{2}}{2^{2}} by multiplying 110 by the reciprocal of \frac{4+4r+r^{2}}{2^{2}}.
100=\frac{0.5}{1+\frac{r}{2}}+\frac{2}{4+4r+r^{2}}+\frac{110\times 4}{4+4r+r^{2}}
Calculate 2 to the power of 2 and get 4.
100=\frac{0.5}{1+\frac{r}{2}}+\frac{2}{4+4r+r^{2}}+\frac{440}{4+4r+r^{2}}
Multiply 110 and 4 to get 440.
100=\frac{0.5}{1+\frac{r}{2}}+\frac{442}{4+4r+r^{2}}
Since \frac{2}{4+4r+r^{2}} and \frac{440}{4+4r+r^{2}} have the same denominator, add them by adding their numerators. Add 2 and 440 to get 442.
\frac{0.5}{1+\frac{r}{2}}+\frac{442}{4+4r+r^{2}}=100
Swap sides so that all variable terms are on the left hand side.
\left(2r+4\right)\times 0.5+442=100\left(r+2\right)^{2}
Variable r cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by \left(r+2\right)^{2}.
r+2+442=100\left(r+2\right)^{2}
Use the distributive property to multiply 2r+4 by 0.5.
r+444=100\left(r+2\right)^{2}
Add 2 and 442 to get 444.
r+444=100\left(r^{2}+4r+4\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(r+2\right)^{2}.
r+444=100r^{2}+400r+400
Use the distributive property to multiply 100 by r^{2}+4r+4.
r+444-100r^{2}=400r+400
Subtract 100r^{2} from both sides.
r+444-100r^{2}-400r=400
Subtract 400r from both sides.
-399r+444-100r^{2}=400
Combine r and -400r to get -399r.
-399r-100r^{2}=400-444
Subtract 444 from both sides.
-399r-100r^{2}=-44
Subtract 444 from 400 to get -44.
-100r^{2}-399r=-44
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-100r^{2}-399r}{-100}=-\frac{44}{-100}
Divide both sides by -100.
r^{2}+\left(-\frac{399}{-100}\right)r=-\frac{44}{-100}
Dividing by -100 undoes the multiplication by -100.
r^{2}+\frac{399}{100}r=-\frac{44}{-100}
Divide -399 by -100.
r^{2}+\frac{399}{100}r=\frac{11}{25}
Reduce the fraction \frac{-44}{-100} to lowest terms by extracting and canceling out 4.
r^{2}+\frac{399}{100}r+\left(\frac{399}{200}\right)^{2}=\frac{11}{25}+\left(\frac{399}{200}\right)^{2}
Divide \frac{399}{100}, the coefficient of the x term, by 2 to get \frac{399}{200}. Then add the square of \frac{399}{200} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
r^{2}+\frac{399}{100}r+\frac{159201}{40000}=\frac{11}{25}+\frac{159201}{40000}
Square \frac{399}{200} by squaring both the numerator and the denominator of the fraction.
r^{2}+\frac{399}{100}r+\frac{159201}{40000}=\frac{176801}{40000}
Add \frac{11}{25} to \frac{159201}{40000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(r+\frac{399}{200}\right)^{2}=\frac{176801}{40000}
Factor r^{2}+\frac{399}{100}r+\frac{159201}{40000}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r+\frac{399}{200}\right)^{2}}=\sqrt{\frac{176801}{40000}}
Take the square root of both sides of the equation.
r+\frac{399}{200}=\frac{\sqrt{176801}}{200} r+\frac{399}{200}=-\frac{\sqrt{176801}}{200}
Simplify.
r=\frac{\sqrt{176801}-399}{200} r=\frac{-\sqrt{176801}-399}{200}
Subtract \frac{399}{200} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}