Evaluate
7.5
Factor
\frac{3 \cdot 5}{2} = 7\frac{1}{2} = 7.5
Share
Copied to clipboard
10.8\left(\frac{8}{12}-\frac{9}{12}+\frac{7}{9}\right)
Least common multiple of 3 and 4 is 12. Convert \frac{2}{3} and \frac{3}{4} to fractions with denominator 12.
10.8\left(\frac{8-9}{12}+\frac{7}{9}\right)
Since \frac{8}{12} and \frac{9}{12} have the same denominator, subtract them by subtracting their numerators.
10.8\left(-\frac{1}{12}+\frac{7}{9}\right)
Subtract 9 from 8 to get -1.
10.8\left(-\frac{3}{36}+\frac{28}{36}\right)
Least common multiple of 12 and 9 is 36. Convert -\frac{1}{12} and \frac{7}{9} to fractions with denominator 36.
10.8\times \frac{-3+28}{36}
Since -\frac{3}{36} and \frac{28}{36} have the same denominator, add them by adding their numerators.
10.8\times \frac{25}{36}
Add -3 and 28 to get 25.
\frac{54}{5}\times \frac{25}{36}
Convert decimal number 10.8 to fraction \frac{108}{10}. Reduce the fraction \frac{108}{10} to lowest terms by extracting and canceling out 2.
\frac{54\times 25}{5\times 36}
Multiply \frac{54}{5} times \frac{25}{36} by multiplying numerator times numerator and denominator times denominator.
\frac{1350}{180}
Do the multiplications in the fraction \frac{54\times 25}{5\times 36}.
\frac{15}{2}
Reduce the fraction \frac{1350}{180} to lowest terms by extracting and canceling out 90.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}