Solve for x
x=\frac{53y}{45}+\frac{1}{9}
Solve for y
y=\frac{45x-5}{53}
Graph
Share
Copied to clipboard
9x-1=10.6y
Swap sides so that all variable terms are on the left hand side.
9x=10.6y+1
Add 1 to both sides.
9x=\frac{53y}{5}+1
The equation is in standard form.
\frac{9x}{9}=\frac{\frac{53y}{5}+1}{9}
Divide both sides by 9.
x=\frac{\frac{53y}{5}+1}{9}
Dividing by 9 undoes the multiplication by 9.
x=\frac{53y}{45}+\frac{1}{9}
Divide \frac{53y}{5}+1 by 9.
10.6y=9x-1
The equation is in standard form.
\frac{10.6y}{10.6}=\frac{9x-1}{10.6}
Divide both sides of the equation by 10.6, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{9x-1}{10.6}
Dividing by 10.6 undoes the multiplication by 10.6.
y=\frac{45x-5}{53}
Divide 9x-1 by 10.6 by multiplying 9x-1 by the reciprocal of 10.6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}