Solve for I_1
I_{1}=\frac{8-4I_{3}-6I_{2}}{7}
Solve for I_2
I_{2}=-\frac{2I_{3}}{3}-\frac{7I_{1}}{6}+\frac{4}{3}
Share
Copied to clipboard
10.5I_{1}+6I_{3}=12-9I_{2}
Subtract 9I_{2} from both sides.
10.5I_{1}=12-9I_{2}-6I_{3}
Subtract 6I_{3} from both sides.
10.5I_{1}=12-6I_{3}-9I_{2}
The equation is in standard form.
\frac{10.5I_{1}}{10.5}=\frac{12-6I_{3}-9I_{2}}{10.5}
Divide both sides of the equation by 10.5, which is the same as multiplying both sides by the reciprocal of the fraction.
I_{1}=\frac{12-6I_{3}-9I_{2}}{10.5}
Dividing by 10.5 undoes the multiplication by 10.5.
I_{1}=\frac{8-4I_{3}-6I_{2}}{7}
Divide 12-9I_{2}-6I_{3} by 10.5 by multiplying 12-9I_{2}-6I_{3} by the reciprocal of 10.5.
9I_{2}+6I_{3}=12-10.5I_{1}
Subtract 10.5I_{1} from both sides.
9I_{2}=12-10.5I_{1}-6I_{3}
Subtract 6I_{3} from both sides.
9I_{2}=-\frac{21I_{1}}{2}-6I_{3}+12
The equation is in standard form.
\frac{9I_{2}}{9}=\frac{-\frac{21I_{1}}{2}-6I_{3}+12}{9}
Divide both sides by 9.
I_{2}=\frac{-\frac{21I_{1}}{2}-6I_{3}+12}{9}
Dividing by 9 undoes the multiplication by 9.
I_{2}=-\frac{2I_{3}}{3}-\frac{7I_{1}}{6}+\frac{4}{3}
Divide 12-\frac{21I_{1}}{2}-6I_{3} by 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}