Solve for x
x = \frac{20 \sqrt{31621} + 5200}{179} \approx 48.918764877
x = \frac{5200 - 20 \sqrt{31621}}{179} \approx 9.181793782
Graph
Share
Copied to clipboard
10.4x-80.4-0.179x^{2}=0
Subtract 0.179x^{2} from both sides.
-0.179x^{2}+10.4x-80.4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-10.4±\sqrt{10.4^{2}-4\left(-0.179\right)\left(-80.4\right)}}{2\left(-0.179\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -0.179 for a, 10.4 for b, and -80.4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10.4±\sqrt{108.16-4\left(-0.179\right)\left(-80.4\right)}}{2\left(-0.179\right)}
Square 10.4 by squaring both the numerator and the denominator of the fraction.
x=\frac{-10.4±\sqrt{108.16+0.716\left(-80.4\right)}}{2\left(-0.179\right)}
Multiply -4 times -0.179.
x=\frac{-10.4±\sqrt{108.16-57.5664}}{2\left(-0.179\right)}
Multiply 0.716 times -80.4 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-10.4±\sqrt{50.5936}}{2\left(-0.179\right)}
Add 108.16 to -57.5664 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-10.4±\frac{\sqrt{31621}}{25}}{2\left(-0.179\right)}
Take the square root of 50.5936.
x=\frac{-10.4±\frac{\sqrt{31621}}{25}}{-0.358}
Multiply 2 times -0.179.
x=\frac{\frac{\sqrt{31621}}{25}-\frac{52}{5}}{-0.358}
Now solve the equation x=\frac{-10.4±\frac{\sqrt{31621}}{25}}{-0.358} when ± is plus. Add -10.4 to \frac{\sqrt{31621}}{25}.
x=\frac{5200-20\sqrt{31621}}{179}
Divide -\frac{52}{5}+\frac{\sqrt{31621}}{25} by -0.358 by multiplying -\frac{52}{5}+\frac{\sqrt{31621}}{25} by the reciprocal of -0.358.
x=\frac{-\frac{\sqrt{31621}}{25}-\frac{52}{5}}{-0.358}
Now solve the equation x=\frac{-10.4±\frac{\sqrt{31621}}{25}}{-0.358} when ± is minus. Subtract \frac{\sqrt{31621}}{25} from -10.4.
x=\frac{20\sqrt{31621}+5200}{179}
Divide -\frac{52}{5}-\frac{\sqrt{31621}}{25} by -0.358 by multiplying -\frac{52}{5}-\frac{\sqrt{31621}}{25} by the reciprocal of -0.358.
x=\frac{5200-20\sqrt{31621}}{179} x=\frac{20\sqrt{31621}+5200}{179}
The equation is now solved.
10.4x-80.4-0.179x^{2}=0
Subtract 0.179x^{2} from both sides.
10.4x-0.179x^{2}=80.4
Add 80.4 to both sides. Anything plus zero gives itself.
-0.179x^{2}+10.4x=80.4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-0.179x^{2}+10.4x}{-0.179}=\frac{80.4}{-0.179}
Divide both sides of the equation by -0.179, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{10.4}{-0.179}x=\frac{80.4}{-0.179}
Dividing by -0.179 undoes the multiplication by -0.179.
x^{2}-\frac{10400}{179}x=\frac{80.4}{-0.179}
Divide 10.4 by -0.179 by multiplying 10.4 by the reciprocal of -0.179.
x^{2}-\frac{10400}{179}x=-\frac{80400}{179}
Divide 80.4 by -0.179 by multiplying 80.4 by the reciprocal of -0.179.
x^{2}-\frac{10400}{179}x+\left(-\frac{5200}{179}\right)^{2}=-\frac{80400}{179}+\left(-\frac{5200}{179}\right)^{2}
Divide -\frac{10400}{179}, the coefficient of the x term, by 2 to get -\frac{5200}{179}. Then add the square of -\frac{5200}{179} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{10400}{179}x+\frac{27040000}{32041}=-\frac{80400}{179}+\frac{27040000}{32041}
Square -\frac{5200}{179} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{10400}{179}x+\frac{27040000}{32041}=\frac{12648400}{32041}
Add -\frac{80400}{179} to \frac{27040000}{32041} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5200}{179}\right)^{2}=\frac{12648400}{32041}
Factor x^{2}-\frac{10400}{179}x+\frac{27040000}{32041}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5200}{179}\right)^{2}}=\sqrt{\frac{12648400}{32041}}
Take the square root of both sides of the equation.
x-\frac{5200}{179}=\frac{20\sqrt{31621}}{179} x-\frac{5200}{179}=-\frac{20\sqrt{31621}}{179}
Simplify.
x=\frac{20\sqrt{31621}+5200}{179} x=\frac{5200-20\sqrt{31621}}{179}
Add \frac{5200}{179} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}