Evaluate
\frac{49}{3}\approx 16.333333333
Factor
\frac{7 ^ {2}}{3} = 16\frac{1}{3} = 16.333333333333332
Share
Copied to clipboard
10-\frac{\left(2\times 2+1\right)\times 4}{2\left(3\times 4+3\right)}+\left(\frac{2\times 2+1}{2}-\frac{1\times 3+1}{3}\right)\times 6
Divide \frac{2\times 2+1}{2} by \frac{3\times 4+3}{4} by multiplying \frac{2\times 2+1}{2} by the reciprocal of \frac{3\times 4+3}{4}.
10-\frac{2\left(1+2\times 2\right)}{3+3\times 4}+\left(\frac{2\times 2+1}{2}-\frac{1\times 3+1}{3}\right)\times 6
Cancel out 2 in both numerator and denominator.
10-\frac{2\left(1+4\right)}{3+3\times 4}+\left(\frac{2\times 2+1}{2}-\frac{1\times 3+1}{3}\right)\times 6
Multiply 2 and 2 to get 4.
10-\frac{2\times 5}{3+3\times 4}+\left(\frac{2\times 2+1}{2}-\frac{1\times 3+1}{3}\right)\times 6
Add 1 and 4 to get 5.
10-\frac{10}{3+3\times 4}+\left(\frac{2\times 2+1}{2}-\frac{1\times 3+1}{3}\right)\times 6
Multiply 2 and 5 to get 10.
10-\frac{10}{3+12}+\left(\frac{2\times 2+1}{2}-\frac{1\times 3+1}{3}\right)\times 6
Multiply 3 and 4 to get 12.
10-\frac{10}{15}+\left(\frac{2\times 2+1}{2}-\frac{1\times 3+1}{3}\right)\times 6
Add 3 and 12 to get 15.
10-\frac{2}{3}+\left(\frac{2\times 2+1}{2}-\frac{1\times 3+1}{3}\right)\times 6
Reduce the fraction \frac{10}{15} to lowest terms by extracting and canceling out 5.
\frac{30}{3}-\frac{2}{3}+\left(\frac{2\times 2+1}{2}-\frac{1\times 3+1}{3}\right)\times 6
Convert 10 to fraction \frac{30}{3}.
\frac{30-2}{3}+\left(\frac{2\times 2+1}{2}-\frac{1\times 3+1}{3}\right)\times 6
Since \frac{30}{3} and \frac{2}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{28}{3}+\left(\frac{2\times 2+1}{2}-\frac{1\times 3+1}{3}\right)\times 6
Subtract 2 from 30 to get 28.
\frac{28}{3}+\left(\frac{4+1}{2}-\frac{1\times 3+1}{3}\right)\times 6
Multiply 2 and 2 to get 4.
\frac{28}{3}+\left(\frac{5}{2}-\frac{1\times 3+1}{3}\right)\times 6
Add 4 and 1 to get 5.
\frac{28}{3}+\left(\frac{5}{2}-\frac{3+1}{3}\right)\times 6
Multiply 1 and 3 to get 3.
\frac{28}{3}+\left(\frac{5}{2}-\frac{4}{3}\right)\times 6
Add 3 and 1 to get 4.
\frac{28}{3}+\left(\frac{15}{6}-\frac{8}{6}\right)\times 6
Least common multiple of 2 and 3 is 6. Convert \frac{5}{2} and \frac{4}{3} to fractions with denominator 6.
\frac{28}{3}+\frac{15-8}{6}\times 6
Since \frac{15}{6} and \frac{8}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{28}{3}+\frac{7}{6}\times 6
Subtract 8 from 15 to get 7.
\frac{28}{3}+7
Cancel out 6 and 6.
\frac{28}{3}+\frac{21}{3}
Convert 7 to fraction \frac{21}{3}.
\frac{28+21}{3}
Since \frac{28}{3} and \frac{21}{3} have the same denominator, add them by adding their numerators.
\frac{49}{3}
Add 28 and 21 to get 49.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}