Evaluate
\frac{41}{5}=8.2
Factor
\frac{41}{5} = 8\frac{1}{5} = 8.2
Share
Copied to clipboard
10-\frac{1}{1-\frac{1}{\frac{4}{4}+\frac{5}{4}}}
Convert 1 to fraction \frac{4}{4}.
10-\frac{1}{1-\frac{1}{\frac{4+5}{4}}}
Since \frac{4}{4} and \frac{5}{4} have the same denominator, add them by adding their numerators.
10-\frac{1}{1-\frac{1}{\frac{9}{4}}}
Add 4 and 5 to get 9.
10-\frac{1}{1-1\times \frac{4}{9}}
Divide 1 by \frac{9}{4} by multiplying 1 by the reciprocal of \frac{9}{4}.
10-\frac{1}{1-\frac{4}{9}}
Multiply 1 and \frac{4}{9} to get \frac{4}{9}.
10-\frac{1}{\frac{9}{9}-\frac{4}{9}}
Convert 1 to fraction \frac{9}{9}.
10-\frac{1}{\frac{9-4}{9}}
Since \frac{9}{9} and \frac{4}{9} have the same denominator, subtract them by subtracting their numerators.
10-\frac{1}{\frac{5}{9}}
Subtract 4 from 9 to get 5.
10-1\times \frac{9}{5}
Divide 1 by \frac{5}{9} by multiplying 1 by the reciprocal of \frac{5}{9}.
10-\frac{9}{5}
Multiply 1 and \frac{9}{5} to get \frac{9}{5}.
\frac{50}{5}-\frac{9}{5}
Convert 10 to fraction \frac{50}{5}.
\frac{50-9}{5}
Since \frac{50}{5} and \frac{9}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{41}{5}
Subtract 9 from 50 to get 41.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}