Solve for x
x = \frac{9}{2} = 4\frac{1}{2} = 4.5
x = \frac{12}{5} = 2\frac{2}{5} = 2.4
Graph
Share
Copied to clipboard
10\left(x-2\right)\left(x-2\right)+10=29\left(x-2\right)
Variable x cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by x-2.
10\left(x-2\right)^{2}+10=29\left(x-2\right)
Multiply x-2 and x-2 to get \left(x-2\right)^{2}.
10\left(x^{2}-4x+4\right)+10=29\left(x-2\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
10x^{2}-40x+40+10=29\left(x-2\right)
Use the distributive property to multiply 10 by x^{2}-4x+4.
10x^{2}-40x+50=29\left(x-2\right)
Add 40 and 10 to get 50.
10x^{2}-40x+50=29x-58
Use the distributive property to multiply 29 by x-2.
10x^{2}-40x+50-29x=-58
Subtract 29x from both sides.
10x^{2}-69x+50=-58
Combine -40x and -29x to get -69x.
10x^{2}-69x+50+58=0
Add 58 to both sides.
10x^{2}-69x+108=0
Add 50 and 58 to get 108.
x=\frac{-\left(-69\right)±\sqrt{\left(-69\right)^{2}-4\times 10\times 108}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, -69 for b, and 108 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-69\right)±\sqrt{4761-4\times 10\times 108}}{2\times 10}
Square -69.
x=\frac{-\left(-69\right)±\sqrt{4761-40\times 108}}{2\times 10}
Multiply -4 times 10.
x=\frac{-\left(-69\right)±\sqrt{4761-4320}}{2\times 10}
Multiply -40 times 108.
x=\frac{-\left(-69\right)±\sqrt{441}}{2\times 10}
Add 4761 to -4320.
x=\frac{-\left(-69\right)±21}{2\times 10}
Take the square root of 441.
x=\frac{69±21}{2\times 10}
The opposite of -69 is 69.
x=\frac{69±21}{20}
Multiply 2 times 10.
x=\frac{90}{20}
Now solve the equation x=\frac{69±21}{20} when ± is plus. Add 69 to 21.
x=\frac{9}{2}
Reduce the fraction \frac{90}{20} to lowest terms by extracting and canceling out 10.
x=\frac{48}{20}
Now solve the equation x=\frac{69±21}{20} when ± is minus. Subtract 21 from 69.
x=\frac{12}{5}
Reduce the fraction \frac{48}{20} to lowest terms by extracting and canceling out 4.
x=\frac{9}{2} x=\frac{12}{5}
The equation is now solved.
10\left(x-2\right)\left(x-2\right)+10=29\left(x-2\right)
Variable x cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by x-2.
10\left(x-2\right)^{2}+10=29\left(x-2\right)
Multiply x-2 and x-2 to get \left(x-2\right)^{2}.
10\left(x^{2}-4x+4\right)+10=29\left(x-2\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
10x^{2}-40x+40+10=29\left(x-2\right)
Use the distributive property to multiply 10 by x^{2}-4x+4.
10x^{2}-40x+50=29\left(x-2\right)
Add 40 and 10 to get 50.
10x^{2}-40x+50=29x-58
Use the distributive property to multiply 29 by x-2.
10x^{2}-40x+50-29x=-58
Subtract 29x from both sides.
10x^{2}-69x+50=-58
Combine -40x and -29x to get -69x.
10x^{2}-69x=-58-50
Subtract 50 from both sides.
10x^{2}-69x=-108
Subtract 50 from -58 to get -108.
\frac{10x^{2}-69x}{10}=-\frac{108}{10}
Divide both sides by 10.
x^{2}-\frac{69}{10}x=-\frac{108}{10}
Dividing by 10 undoes the multiplication by 10.
x^{2}-\frac{69}{10}x=-\frac{54}{5}
Reduce the fraction \frac{-108}{10} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{69}{10}x+\left(-\frac{69}{20}\right)^{2}=-\frac{54}{5}+\left(-\frac{69}{20}\right)^{2}
Divide -\frac{69}{10}, the coefficient of the x term, by 2 to get -\frac{69}{20}. Then add the square of -\frac{69}{20} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{69}{10}x+\frac{4761}{400}=-\frac{54}{5}+\frac{4761}{400}
Square -\frac{69}{20} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{69}{10}x+\frac{4761}{400}=\frac{441}{400}
Add -\frac{54}{5} to \frac{4761}{400} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{69}{20}\right)^{2}=\frac{441}{400}
Factor x^{2}-\frac{69}{10}x+\frac{4761}{400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{69}{20}\right)^{2}}=\sqrt{\frac{441}{400}}
Take the square root of both sides of the equation.
x-\frac{69}{20}=\frac{21}{20} x-\frac{69}{20}=-\frac{21}{20}
Simplify.
x=\frac{9}{2} x=\frac{12}{5}
Add \frac{69}{20} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}