10(1000-x)(1+02 \% x) \geq 12x
Solve for x
x\leq \frac{5000}{11}
Graph
Share
Copied to clipboard
10\left(1000-x\right)\left(1+0\times \frac{1}{50}x\right)\geq 12x
Reduce the fraction \frac{2}{100} to lowest terms by extracting and canceling out 2.
10\left(1000-x\right)\left(1+0x\right)\geq 12x
Multiply 0 and \frac{1}{50} to get 0.
10\left(1000-x\right)\left(1+0\right)\geq 12x
Anything times zero gives zero.
10\left(1000-x\right)\times 1\geq 12x
Add 1 and 0 to get 1.
10\left(1000-x\right)\geq 12x
Multiply 10 and 1 to get 10.
10000-10x\geq 12x
Use the distributive property to multiply 10 by 1000-x.
10000-10x-12x\geq 0
Subtract 12x from both sides.
10000-22x\geq 0
Combine -10x and -12x to get -22x.
-22x\geq -10000
Subtract 10000 from both sides. Anything subtracted from zero gives its negation.
x\leq \frac{-10000}{-22}
Divide both sides by -22. Since -22 is negative, the inequality direction is changed.
x\leq \frac{5000}{11}
Reduce the fraction \frac{-10000}{-22} to lowest terms by extracting and canceling out -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}