Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

10x=xx+1
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
10x=x^{2}+1
Multiply x and x to get x^{2}.
10x-x^{2}=1
Subtract x^{2} from both sides.
10x-x^{2}-1=0
Subtract 1 from both sides.
-x^{2}+10x-1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-10±\sqrt{10^{2}-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 10 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
Square 10.
x=\frac{-10±\sqrt{100+4\left(-1\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-10±\sqrt{100-4}}{2\left(-1\right)}
Multiply 4 times -1.
x=\frac{-10±\sqrt{96}}{2\left(-1\right)}
Add 100 to -4.
x=\frac{-10±4\sqrt{6}}{2\left(-1\right)}
Take the square root of 96.
x=\frac{-10±4\sqrt{6}}{-2}
Multiply 2 times -1.
x=\frac{4\sqrt{6}-10}{-2}
Now solve the equation x=\frac{-10±4\sqrt{6}}{-2} when ± is plus. Add -10 to 4\sqrt{6}.
x=5-2\sqrt{6}
Divide -10+4\sqrt{6} by -2.
x=\frac{-4\sqrt{6}-10}{-2}
Now solve the equation x=\frac{-10±4\sqrt{6}}{-2} when ± is minus. Subtract 4\sqrt{6} from -10.
x=2\sqrt{6}+5
Divide -10-4\sqrt{6} by -2.
x=5-2\sqrt{6} x=2\sqrt{6}+5
The equation is now solved.
10x=xx+1
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
10x=x^{2}+1
Multiply x and x to get x^{2}.
10x-x^{2}=1
Subtract x^{2} from both sides.
-x^{2}+10x=1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+10x}{-1}=\frac{1}{-1}
Divide both sides by -1.
x^{2}+\frac{10}{-1}x=\frac{1}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-10x=\frac{1}{-1}
Divide 10 by -1.
x^{2}-10x=-1
Divide 1 by -1.
x^{2}-10x+\left(-5\right)^{2}=-1+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-10x+25=-1+25
Square -5.
x^{2}-10x+25=24
Add -1 to 25.
\left(x-5\right)^{2}=24
Factor x^{2}-10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{24}
Take the square root of both sides of the equation.
x-5=2\sqrt{6} x-5=-2\sqrt{6}
Simplify.
x=2\sqrt{6}+5 x=5-2\sqrt{6}
Add 5 to both sides of the equation.