Solve for y
y=2
y=\frac{1}{2}=0.5
Graph
Share
Copied to clipboard
5y-2y^{2}-2=0
Divide both sides by 2.
-2y^{2}+5y-2=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=5 ab=-2\left(-2\right)=4
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -2y^{2}+ay+by-2. To find a and b, set up a system to be solved.
1,4 2,2
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 4.
1+4=5 2+2=4
Calculate the sum for each pair.
a=4 b=1
The solution is the pair that gives sum 5.
\left(-2y^{2}+4y\right)+\left(y-2\right)
Rewrite -2y^{2}+5y-2 as \left(-2y^{2}+4y\right)+\left(y-2\right).
2y\left(-y+2\right)-\left(-y+2\right)
Factor out 2y in the first and -1 in the second group.
\left(-y+2\right)\left(2y-1\right)
Factor out common term -y+2 by using distributive property.
y=2 y=\frac{1}{2}
To find equation solutions, solve -y+2=0 and 2y-1=0.
-4y^{2}+10y-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-10±\sqrt{10^{2}-4\left(-4\right)\left(-4\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 10 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-10±\sqrt{100-4\left(-4\right)\left(-4\right)}}{2\left(-4\right)}
Square 10.
y=\frac{-10±\sqrt{100+16\left(-4\right)}}{2\left(-4\right)}
Multiply -4 times -4.
y=\frac{-10±\sqrt{100-64}}{2\left(-4\right)}
Multiply 16 times -4.
y=\frac{-10±\sqrt{36}}{2\left(-4\right)}
Add 100 to -64.
y=\frac{-10±6}{2\left(-4\right)}
Take the square root of 36.
y=\frac{-10±6}{-8}
Multiply 2 times -4.
y=-\frac{4}{-8}
Now solve the equation y=\frac{-10±6}{-8} when ± is plus. Add -10 to 6.
y=\frac{1}{2}
Reduce the fraction \frac{-4}{-8} to lowest terms by extracting and canceling out 4.
y=-\frac{16}{-8}
Now solve the equation y=\frac{-10±6}{-8} when ± is minus. Subtract 6 from -10.
y=2
Divide -16 by -8.
y=\frac{1}{2} y=2
The equation is now solved.
-4y^{2}+10y-4=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-4y^{2}+10y-4-\left(-4\right)=-\left(-4\right)
Add 4 to both sides of the equation.
-4y^{2}+10y=-\left(-4\right)
Subtracting -4 from itself leaves 0.
-4y^{2}+10y=4
Subtract -4 from 0.
\frac{-4y^{2}+10y}{-4}=\frac{4}{-4}
Divide both sides by -4.
y^{2}+\frac{10}{-4}y=\frac{4}{-4}
Dividing by -4 undoes the multiplication by -4.
y^{2}-\frac{5}{2}y=\frac{4}{-4}
Reduce the fraction \frac{10}{-4} to lowest terms by extracting and canceling out 2.
y^{2}-\frac{5}{2}y=-1
Divide 4 by -4.
y^{2}-\frac{5}{2}y+\left(-\frac{5}{4}\right)^{2}=-1+\left(-\frac{5}{4}\right)^{2}
Divide -\frac{5}{2}, the coefficient of the x term, by 2 to get -\frac{5}{4}. Then add the square of -\frac{5}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{5}{2}y+\frac{25}{16}=-1+\frac{25}{16}
Square -\frac{5}{4} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{5}{2}y+\frac{25}{16}=\frac{9}{16}
Add -1 to \frac{25}{16}.
\left(y-\frac{5}{4}\right)^{2}=\frac{9}{16}
Factor y^{2}-\frac{5}{2}y+\frac{25}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{5}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Take the square root of both sides of the equation.
y-\frac{5}{4}=\frac{3}{4} y-\frac{5}{4}=-\frac{3}{4}
Simplify.
y=2 y=\frac{1}{2}
Add \frac{5}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}