Evaluate
\frac{21y}{20}
Differentiate w.r.t. y
\frac{21}{20} = 1\frac{1}{20} = 1.05
Graph
Share
Copied to clipboard
\frac{10y}{25}+\frac{26y}{40}
Calculate 5 to the power of 2 and get 25.
\frac{2}{5}y+\frac{26y}{40}
Divide 10y by 25 to get \frac{2}{5}y.
\frac{2}{5}y+\frac{13}{20}y
Divide 26y by 40 to get \frac{13}{20}y.
\frac{21}{20}y
Combine \frac{2}{5}y and \frac{13}{20}y to get \frac{21}{20}y.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{10y}{25}+\frac{26y}{40})
Calculate 5 to the power of 2 and get 25.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{2}{5}y+\frac{26y}{40})
Divide 10y by 25 to get \frac{2}{5}y.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{2}{5}y+\frac{13}{20}y)
Divide 26y by 40 to get \frac{13}{20}y.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{21}{20}y)
Combine \frac{2}{5}y and \frac{13}{20}y to get \frac{21}{20}y.
\frac{21}{20}y^{1-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{21}{20}y^{0}
Subtract 1 from 1.
\frac{21}{20}\times 1
For any term t except 0, t^{0}=1.
\frac{21}{20}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}