Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=9 ab=10\times 2=20
Factor the expression by grouping. First, the expression needs to be rewritten as 10y^{2}+ay+by+2. To find a and b, set up a system to be solved.
1,20 2,10 4,5
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 20.
1+20=21 2+10=12 4+5=9
Calculate the sum for each pair.
a=4 b=5
The solution is the pair that gives sum 9.
\left(10y^{2}+4y\right)+\left(5y+2\right)
Rewrite 10y^{2}+9y+2 as \left(10y^{2}+4y\right)+\left(5y+2\right).
2y\left(5y+2\right)+5y+2
Factor out 2y in 10y^{2}+4y.
\left(5y+2\right)\left(2y+1\right)
Factor out common term 5y+2 by using distributive property.
10y^{2}+9y+2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-9±\sqrt{9^{2}-4\times 10\times 2}}{2\times 10}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-9±\sqrt{81-4\times 10\times 2}}{2\times 10}
Square 9.
y=\frac{-9±\sqrt{81-40\times 2}}{2\times 10}
Multiply -4 times 10.
y=\frac{-9±\sqrt{81-80}}{2\times 10}
Multiply -40 times 2.
y=\frac{-9±\sqrt{1}}{2\times 10}
Add 81 to -80.
y=\frac{-9±1}{2\times 10}
Take the square root of 1.
y=\frac{-9±1}{20}
Multiply 2 times 10.
y=-\frac{8}{20}
Now solve the equation y=\frac{-9±1}{20} when ± is plus. Add -9 to 1.
y=-\frac{2}{5}
Reduce the fraction \frac{-8}{20} to lowest terms by extracting and canceling out 4.
y=-\frac{10}{20}
Now solve the equation y=\frac{-9±1}{20} when ± is minus. Subtract 1 from -9.
y=-\frac{1}{2}
Reduce the fraction \frac{-10}{20} to lowest terms by extracting and canceling out 10.
10y^{2}+9y+2=10\left(y-\left(-\frac{2}{5}\right)\right)\left(y-\left(-\frac{1}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{2}{5} for x_{1} and -\frac{1}{2} for x_{2}.
10y^{2}+9y+2=10\left(y+\frac{2}{5}\right)\left(y+\frac{1}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
10y^{2}+9y+2=10\times \frac{5y+2}{5}\left(y+\frac{1}{2}\right)
Add \frac{2}{5} to y by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
10y^{2}+9y+2=10\times \frac{5y+2}{5}\times \frac{2y+1}{2}
Add \frac{1}{2} to y by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
10y^{2}+9y+2=10\times \frac{\left(5y+2\right)\left(2y+1\right)}{5\times 2}
Multiply \frac{5y+2}{5} times \frac{2y+1}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
10y^{2}+9y+2=10\times \frac{\left(5y+2\right)\left(2y+1\right)}{10}
Multiply 5 times 2.
10y^{2}+9y+2=\left(5y+2\right)\left(2y+1\right)
Cancel out 10, the greatest common factor in 10 and 10.
x ^ 2 +\frac{9}{10}x +\frac{1}{5} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 10
r + s = -\frac{9}{10} rs = \frac{1}{5}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{9}{20} - u s = -\frac{9}{20} + u
Two numbers r and s sum up to -\frac{9}{10} exactly when the average of the two numbers is \frac{1}{2}*-\frac{9}{10} = -\frac{9}{20}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{9}{20} - u) (-\frac{9}{20} + u) = \frac{1}{5}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{1}{5}
\frac{81}{400} - u^2 = \frac{1}{5}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{1}{5}-\frac{81}{400} = -\frac{1}{400}
Simplify the expression by subtracting \frac{81}{400} on both sides
u^2 = \frac{1}{400} u = \pm\sqrt{\frac{1}{400}} = \pm \frac{1}{20}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{9}{20} - \frac{1}{20} = -0.500 s = -\frac{9}{20} + \frac{1}{20} = -0.400
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.