Solve for x (complex solution)
x=\frac{-6\sqrt{35}i+75}{17}\approx 4.411764706-2.088028159i
Graph
Share
Copied to clipboard
6\sqrt{4+6-x^{2}}=-\left(10x-60\right)
Subtract 10x-60 from both sides of the equation.
6\sqrt{10-x^{2}}=-\left(10x-60\right)
Add 4 and 6 to get 10.
6\sqrt{10-x^{2}}=-10x+60
To find the opposite of 10x-60, find the opposite of each term.
\left(6\sqrt{10-x^{2}}\right)^{2}=\left(-10x+60\right)^{2}
Square both sides of the equation.
6^{2}\left(\sqrt{10-x^{2}}\right)^{2}=\left(-10x+60\right)^{2}
Expand \left(6\sqrt{10-x^{2}}\right)^{2}.
36\left(\sqrt{10-x^{2}}\right)^{2}=\left(-10x+60\right)^{2}
Calculate 6 to the power of 2 and get 36.
36\left(10-x^{2}\right)=\left(-10x+60\right)^{2}
Calculate \sqrt{10-x^{2}} to the power of 2 and get 10-x^{2}.
360-36x^{2}=\left(-10x+60\right)^{2}
Use the distributive property to multiply 36 by 10-x^{2}.
360-36x^{2}=100x^{2}-1200x+3600
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-10x+60\right)^{2}.
360-36x^{2}-100x^{2}=-1200x+3600
Subtract 100x^{2} from both sides.
360-136x^{2}=-1200x+3600
Combine -36x^{2} and -100x^{2} to get -136x^{2}.
360-136x^{2}+1200x=3600
Add 1200x to both sides.
360-136x^{2}+1200x-3600=0
Subtract 3600 from both sides.
-3240-136x^{2}+1200x=0
Subtract 3600 from 360 to get -3240.
-136x^{2}+1200x-3240=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1200±\sqrt{1200^{2}-4\left(-136\right)\left(-3240\right)}}{2\left(-136\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -136 for a, 1200 for b, and -3240 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1200±\sqrt{1440000-4\left(-136\right)\left(-3240\right)}}{2\left(-136\right)}
Square 1200.
x=\frac{-1200±\sqrt{1440000+544\left(-3240\right)}}{2\left(-136\right)}
Multiply -4 times -136.
x=\frac{-1200±\sqrt{1440000-1762560}}{2\left(-136\right)}
Multiply 544 times -3240.
x=\frac{-1200±\sqrt{-322560}}{2\left(-136\right)}
Add 1440000 to -1762560.
x=\frac{-1200±96\sqrt{35}i}{2\left(-136\right)}
Take the square root of -322560.
x=\frac{-1200±96\sqrt{35}i}{-272}
Multiply 2 times -136.
x=\frac{-1200+96\sqrt{35}i}{-272}
Now solve the equation x=\frac{-1200±96\sqrt{35}i}{-272} when ± is plus. Add -1200 to 96i\sqrt{35}.
x=\frac{-6\sqrt{35}i+75}{17}
Divide -1200+96i\sqrt{35} by -272.
x=\frac{-96\sqrt{35}i-1200}{-272}
Now solve the equation x=\frac{-1200±96\sqrt{35}i}{-272} when ± is minus. Subtract 96i\sqrt{35} from -1200.
x=\frac{75+6\sqrt{35}i}{17}
Divide -1200-96i\sqrt{35} by -272.
x=\frac{-6\sqrt{35}i+75}{17} x=\frac{75+6\sqrt{35}i}{17}
The equation is now solved.
10\times \frac{-6\sqrt{35}i+75}{17}-60+6\sqrt{4+6-\left(\frac{-6\sqrt{35}i+75}{17}\right)^{2}}=0
Substitute \frac{-6\sqrt{35}i+75}{17} for x in the equation 10x-60+6\sqrt{4+6-x^{2}}=0.
0=0
Simplify. The value x=\frac{-6\sqrt{35}i+75}{17} satisfies the equation.
10\times \frac{75+6\sqrt{35}i}{17}-60+6\sqrt{4+6-\left(\frac{75+6\sqrt{35}i}{17}\right)^{2}}=0
Substitute \frac{75+6\sqrt{35}i}{17} for x in the equation 10x-60+6\sqrt{4+6-x^{2}}=0.
-\frac{540}{17}+\frac{120}{17}i\times 35^{\frac{1}{2}}=0
Simplify. The value x=\frac{75+6\sqrt{35}i}{17} does not satisfy the equation.
x=\frac{-6\sqrt{35}i+75}{17}
Equation 6\sqrt{10-x^{2}}=60-10x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}