Solve for x
x=\frac{3\left(y+27\right)}{10}
Solve for y
y=\frac{10x}{3}-27
Graph
Share
Copied to clipboard
10x-81=3y
Add 3y to both sides. Anything plus zero gives itself.
10x=3y+81
Add 81 to both sides.
\frac{10x}{10}=\frac{3y+81}{10}
Divide both sides by 10.
x=\frac{3y+81}{10}
Dividing by 10 undoes the multiplication by 10.
-3y-81=-10x
Subtract 10x from both sides. Anything subtracted from zero gives its negation.
-3y=-10x+81
Add 81 to both sides.
-3y=81-10x
The equation is in standard form.
\frac{-3y}{-3}=\frac{81-10x}{-3}
Divide both sides by -3.
y=\frac{81-10x}{-3}
Dividing by -3 undoes the multiplication by -3.
y=\frac{10x}{3}-27
Divide -10x+81 by -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}