Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

10x^{2}-10x=9x-6
Use the distributive property to multiply 10x by x-1.
10x^{2}-10x-9x=-6
Subtract 9x from both sides.
10x^{2}-19x=-6
Combine -10x and -9x to get -19x.
10x^{2}-19x+6=0
Add 6 to both sides.
x=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}-4\times 10\times 6}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, -19 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-19\right)±\sqrt{361-4\times 10\times 6}}{2\times 10}
Square -19.
x=\frac{-\left(-19\right)±\sqrt{361-40\times 6}}{2\times 10}
Multiply -4 times 10.
x=\frac{-\left(-19\right)±\sqrt{361-240}}{2\times 10}
Multiply -40 times 6.
x=\frac{-\left(-19\right)±\sqrt{121}}{2\times 10}
Add 361 to -240.
x=\frac{-\left(-19\right)±11}{2\times 10}
Take the square root of 121.
x=\frac{19±11}{2\times 10}
The opposite of -19 is 19.
x=\frac{19±11}{20}
Multiply 2 times 10.
x=\frac{30}{20}
Now solve the equation x=\frac{19±11}{20} when ± is plus. Add 19 to 11.
x=\frac{3}{2}
Reduce the fraction \frac{30}{20} to lowest terms by extracting and canceling out 10.
x=\frac{8}{20}
Now solve the equation x=\frac{19±11}{20} when ± is minus. Subtract 11 from 19.
x=\frac{2}{5}
Reduce the fraction \frac{8}{20} to lowest terms by extracting and canceling out 4.
x=\frac{3}{2} x=\frac{2}{5}
The equation is now solved.
10x^{2}-10x=9x-6
Use the distributive property to multiply 10x by x-1.
10x^{2}-10x-9x=-6
Subtract 9x from both sides.
10x^{2}-19x=-6
Combine -10x and -9x to get -19x.
\frac{10x^{2}-19x}{10}=-\frac{6}{10}
Divide both sides by 10.
x^{2}-\frac{19}{10}x=-\frac{6}{10}
Dividing by 10 undoes the multiplication by 10.
x^{2}-\frac{19}{10}x=-\frac{3}{5}
Reduce the fraction \frac{-6}{10} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{19}{10}x+\left(-\frac{19}{20}\right)^{2}=-\frac{3}{5}+\left(-\frac{19}{20}\right)^{2}
Divide -\frac{19}{10}, the coefficient of the x term, by 2 to get -\frac{19}{20}. Then add the square of -\frac{19}{20} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{19}{10}x+\frac{361}{400}=-\frac{3}{5}+\frac{361}{400}
Square -\frac{19}{20} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{19}{10}x+\frac{361}{400}=\frac{121}{400}
Add -\frac{3}{5} to \frac{361}{400} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{19}{20}\right)^{2}=\frac{121}{400}
Factor x^{2}-\frac{19}{10}x+\frac{361}{400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{19}{20}\right)^{2}}=\sqrt{\frac{121}{400}}
Take the square root of both sides of the equation.
x-\frac{19}{20}=\frac{11}{20} x-\frac{19}{20}=-\frac{11}{20}
Simplify.
x=\frac{3}{2} x=\frac{2}{5}
Add \frac{19}{20} to both sides of the equation.