Factor
\left(x-2\right)\left(2x-1\right)\left(x+2\right)\left(5x+1\right)
Evaluate
\left(2x-1\right)\left(5x+1\right)\left(x^{2}-4\right)
Graph
Share
Copied to clipboard
10x^{4}-3x^{3}-41x^{2}+12x+4=0
To factor the expression, solve the equation where it equals to 0.
±\frac{2}{5},±\frac{4}{5},±2,±4,±\frac{1}{5},±1,±\frac{1}{10},±\frac{1}{2}
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 4 and q divides the leading coefficient 10. List all candidates \frac{p}{q}.
x=2
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
10x^{3}+17x^{2}-7x-2=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 10x^{4}-3x^{3}-41x^{2}+12x+4 by x-2 to get 10x^{3}+17x^{2}-7x-2. To factor the result, solve the equation where it equals to 0.
±\frac{1}{5},±\frac{2}{5},±1,±2,±\frac{1}{10},±\frac{1}{2}
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -2 and q divides the leading coefficient 10. List all candidates \frac{p}{q}.
x=-2
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
10x^{2}-3x-1=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 10x^{3}+17x^{2}-7x-2 by x+2 to get 10x^{2}-3x-1. To factor the result, solve the equation where it equals to 0.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 10\left(-1\right)}}{2\times 10}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 10 for a, -3 for b, and -1 for c in the quadratic formula.
x=\frac{3±7}{20}
Do the calculations.
x=-\frac{1}{5} x=\frac{1}{2}
Solve the equation 10x^{2}-3x-1=0 when ± is plus and when ± is minus.
\left(x-2\right)\left(2x-1\right)\left(x+2\right)\left(5x+1\right)
Rewrite the factored expression using the obtained roots.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}