Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\left(10x-5\right)=0
Factor out x.
x=0 x=\frac{1}{2}
To find equation solutions, solve x=0 and 10x-5=0.
10x^{2}-5x=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, -5 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±5}{2\times 10}
Take the square root of \left(-5\right)^{2}.
x=\frac{5±5}{2\times 10}
The opposite of -5 is 5.
x=\frac{5±5}{20}
Multiply 2 times 10.
x=\frac{10}{20}
Now solve the equation x=\frac{5±5}{20} when ± is plus. Add 5 to 5.
x=\frac{1}{2}
Reduce the fraction \frac{10}{20} to lowest terms by extracting and canceling out 10.
x=\frac{0}{20}
Now solve the equation x=\frac{5±5}{20} when ± is minus. Subtract 5 from 5.
x=0
Divide 0 by 20.
x=\frac{1}{2} x=0
The equation is now solved.
10x^{2}-5x=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{10x^{2}-5x}{10}=\frac{0}{10}
Divide both sides by 10.
x^{2}+\left(-\frac{5}{10}\right)x=\frac{0}{10}
Dividing by 10 undoes the multiplication by 10.
x^{2}-\frac{1}{2}x=\frac{0}{10}
Reduce the fraction \frac{-5}{10} to lowest terms by extracting and canceling out 5.
x^{2}-\frac{1}{2}x=0
Divide 0 by 10.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{1}{4}\right)^{2}=\frac{1}{16}
Factor x^{2}-\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Take the square root of both sides of the equation.
x-\frac{1}{4}=\frac{1}{4} x-\frac{1}{4}=-\frac{1}{4}
Simplify.
x=\frac{1}{2} x=0
Add \frac{1}{4} to both sides of the equation.