Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(5x^{2}-14x\right)
Factor out 2.
x\left(5x-14\right)
Consider 5x^{2}-14x. Factor out x.
2x\left(5x-14\right)
Rewrite the complete factored expression.
10x^{2}-28x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-28\right)±\sqrt{\left(-28\right)^{2}}}{2\times 10}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-28\right)±28}{2\times 10}
Take the square root of \left(-28\right)^{2}.
x=\frac{28±28}{2\times 10}
The opposite of -28 is 28.
x=\frac{28±28}{20}
Multiply 2 times 10.
x=\frac{56}{20}
Now solve the equation x=\frac{28±28}{20} when ± is plus. Add 28 to 28.
x=\frac{14}{5}
Reduce the fraction \frac{56}{20} to lowest terms by extracting and canceling out 4.
x=\frac{0}{20}
Now solve the equation x=\frac{28±28}{20} when ± is minus. Subtract 28 from 28.
x=0
Divide 0 by 20.
10x^{2}-28x=10\left(x-\frac{14}{5}\right)x
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{14}{5} for x_{1} and 0 for x_{2}.
10x^{2}-28x=10\times \frac{5x-14}{5}x
Subtract \frac{14}{5} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
10x^{2}-28x=2\left(5x-14\right)x
Cancel out 5, the greatest common factor in 10 and 5.