Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-21 ab=10\times 9=90
Factor the expression by grouping. First, the expression needs to be rewritten as 10x^{2}+ax+bx+9. To find a and b, set up a system to be solved.
-1,-90 -2,-45 -3,-30 -5,-18 -6,-15 -9,-10
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 90.
-1-90=-91 -2-45=-47 -3-30=-33 -5-18=-23 -6-15=-21 -9-10=-19
Calculate the sum for each pair.
a=-15 b=-6
The solution is the pair that gives sum -21.
\left(10x^{2}-15x\right)+\left(-6x+9\right)
Rewrite 10x^{2}-21x+9 as \left(10x^{2}-15x\right)+\left(-6x+9\right).
5x\left(2x-3\right)-3\left(2x-3\right)
Factor out 5x in the first and -3 in the second group.
\left(2x-3\right)\left(5x-3\right)
Factor out common term 2x-3 by using distributive property.
10x^{2}-21x+9=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}-4\times 10\times 9}}{2\times 10}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-21\right)±\sqrt{441-4\times 10\times 9}}{2\times 10}
Square -21.
x=\frac{-\left(-21\right)±\sqrt{441-40\times 9}}{2\times 10}
Multiply -4 times 10.
x=\frac{-\left(-21\right)±\sqrt{441-360}}{2\times 10}
Multiply -40 times 9.
x=\frac{-\left(-21\right)±\sqrt{81}}{2\times 10}
Add 441 to -360.
x=\frac{-\left(-21\right)±9}{2\times 10}
Take the square root of 81.
x=\frac{21±9}{2\times 10}
The opposite of -21 is 21.
x=\frac{21±9}{20}
Multiply 2 times 10.
x=\frac{30}{20}
Now solve the equation x=\frac{21±9}{20} when ± is plus. Add 21 to 9.
x=\frac{3}{2}
Reduce the fraction \frac{30}{20} to lowest terms by extracting and canceling out 10.
x=\frac{12}{20}
Now solve the equation x=\frac{21±9}{20} when ± is minus. Subtract 9 from 21.
x=\frac{3}{5}
Reduce the fraction \frac{12}{20} to lowest terms by extracting and canceling out 4.
10x^{2}-21x+9=10\left(x-\frac{3}{2}\right)\left(x-\frac{3}{5}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{3}{2} for x_{1} and \frac{3}{5} for x_{2}.
10x^{2}-21x+9=10\times \frac{2x-3}{2}\left(x-\frac{3}{5}\right)
Subtract \frac{3}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
10x^{2}-21x+9=10\times \frac{2x-3}{2}\times \frac{5x-3}{5}
Subtract \frac{3}{5} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
10x^{2}-21x+9=10\times \frac{\left(2x-3\right)\left(5x-3\right)}{2\times 5}
Multiply \frac{2x-3}{2} times \frac{5x-3}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
10x^{2}-21x+9=10\times \frac{\left(2x-3\right)\left(5x-3\right)}{10}
Multiply 2 times 5.
10x^{2}-21x+9=\left(2x-3\right)\left(5x-3\right)
Cancel out 10, the greatest common factor in 10 and 10.
x ^ 2 -\frac{21}{10}x +\frac{9}{10} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 10
r + s = \frac{21}{10} rs = \frac{9}{10}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{21}{20} - u s = \frac{21}{20} + u
Two numbers r and s sum up to \frac{21}{10} exactly when the average of the two numbers is \frac{1}{2}*\frac{21}{10} = \frac{21}{20}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{21}{20} - u) (\frac{21}{20} + u) = \frac{9}{10}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{9}{10}
\frac{441}{400} - u^2 = \frac{9}{10}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{9}{10}-\frac{441}{400} = -\frac{81}{400}
Simplify the expression by subtracting \frac{441}{400} on both sides
u^2 = \frac{81}{400} u = \pm\sqrt{\frac{81}{400}} = \pm \frac{9}{20}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{21}{20} - \frac{9}{20} = 0.600 s = \frac{21}{20} + \frac{9}{20} = 1.500
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.