Solve for x
x=10\sqrt{2}+10\approx 24.142135624
x=10-10\sqrt{2}\approx -4.142135624
Graph
Share
Copied to clipboard
10x^{2}-200x=1000
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
10x^{2}-200x-1000=1000-1000
Subtract 1000 from both sides of the equation.
10x^{2}-200x-1000=0
Subtracting 1000 from itself leaves 0.
x=\frac{-\left(-200\right)±\sqrt{\left(-200\right)^{2}-4\times 10\left(-1000\right)}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, -200 for b, and -1000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-200\right)±\sqrt{40000-4\times 10\left(-1000\right)}}{2\times 10}
Square -200.
x=\frac{-\left(-200\right)±\sqrt{40000-40\left(-1000\right)}}{2\times 10}
Multiply -4 times 10.
x=\frac{-\left(-200\right)±\sqrt{40000+40000}}{2\times 10}
Multiply -40 times -1000.
x=\frac{-\left(-200\right)±\sqrt{80000}}{2\times 10}
Add 40000 to 40000.
x=\frac{-\left(-200\right)±200\sqrt{2}}{2\times 10}
Take the square root of 80000.
x=\frac{200±200\sqrt{2}}{2\times 10}
The opposite of -200 is 200.
x=\frac{200±200\sqrt{2}}{20}
Multiply 2 times 10.
x=\frac{200\sqrt{2}+200}{20}
Now solve the equation x=\frac{200±200\sqrt{2}}{20} when ± is plus. Add 200 to 200\sqrt{2}.
x=10\sqrt{2}+10
Divide 200+200\sqrt{2} by 20.
x=\frac{200-200\sqrt{2}}{20}
Now solve the equation x=\frac{200±200\sqrt{2}}{20} when ± is minus. Subtract 200\sqrt{2} from 200.
x=10-10\sqrt{2}
Divide 200-200\sqrt{2} by 20.
x=10\sqrt{2}+10 x=10-10\sqrt{2}
The equation is now solved.
10x^{2}-200x=1000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{10x^{2}-200x}{10}=\frac{1000}{10}
Divide both sides by 10.
x^{2}+\left(-\frac{200}{10}\right)x=\frac{1000}{10}
Dividing by 10 undoes the multiplication by 10.
x^{2}-20x=\frac{1000}{10}
Divide -200 by 10.
x^{2}-20x=100
Divide 1000 by 10.
x^{2}-20x+\left(-10\right)^{2}=100+\left(-10\right)^{2}
Divide -20, the coefficient of the x term, by 2 to get -10. Then add the square of -10 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-20x+100=100+100
Square -10.
x^{2}-20x+100=200
Add 100 to 100.
\left(x-10\right)^{2}=200
Factor x^{2}-20x+100. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-10\right)^{2}}=\sqrt{200}
Take the square root of both sides of the equation.
x-10=10\sqrt{2} x-10=-10\sqrt{2}
Simplify.
x=10\sqrt{2}+10 x=10-10\sqrt{2}
Add 10 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}