Solve for x (complex solution)
x=\frac{\sqrt{215}i}{20}+\frac{1}{4}\approx 0.25+0.733143915i
x=-\frac{\sqrt{215}i}{20}+\frac{1}{4}\approx 0.25-0.733143915i
Graph
Share
Copied to clipboard
10x^{2}-2x+2-3x=-4
Subtract 3x from both sides.
10x^{2}-5x+2=-4
Combine -2x and -3x to get -5x.
10x^{2}-5x+2+4=0
Add 4 to both sides.
10x^{2}-5x+6=0
Add 2 and 4 to get 6.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 10\times 6}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, -5 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 10\times 6}}{2\times 10}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25-40\times 6}}{2\times 10}
Multiply -4 times 10.
x=\frac{-\left(-5\right)±\sqrt{25-240}}{2\times 10}
Multiply -40 times 6.
x=\frac{-\left(-5\right)±\sqrt{-215}}{2\times 10}
Add 25 to -240.
x=\frac{-\left(-5\right)±\sqrt{215}i}{2\times 10}
Take the square root of -215.
x=\frac{5±\sqrt{215}i}{2\times 10}
The opposite of -5 is 5.
x=\frac{5±\sqrt{215}i}{20}
Multiply 2 times 10.
x=\frac{5+\sqrt{215}i}{20}
Now solve the equation x=\frac{5±\sqrt{215}i}{20} when ± is plus. Add 5 to i\sqrt{215}.
x=\frac{\sqrt{215}i}{20}+\frac{1}{4}
Divide 5+i\sqrt{215} by 20.
x=\frac{-\sqrt{215}i+5}{20}
Now solve the equation x=\frac{5±\sqrt{215}i}{20} when ± is minus. Subtract i\sqrt{215} from 5.
x=-\frac{\sqrt{215}i}{20}+\frac{1}{4}
Divide 5-i\sqrt{215} by 20.
x=\frac{\sqrt{215}i}{20}+\frac{1}{4} x=-\frac{\sqrt{215}i}{20}+\frac{1}{4}
The equation is now solved.
10x^{2}-2x+2-3x=-4
Subtract 3x from both sides.
10x^{2}-5x+2=-4
Combine -2x and -3x to get -5x.
10x^{2}-5x=-4-2
Subtract 2 from both sides.
10x^{2}-5x=-6
Subtract 2 from -4 to get -6.
\frac{10x^{2}-5x}{10}=-\frac{6}{10}
Divide both sides by 10.
x^{2}+\left(-\frac{5}{10}\right)x=-\frac{6}{10}
Dividing by 10 undoes the multiplication by 10.
x^{2}-\frac{1}{2}x=-\frac{6}{10}
Reduce the fraction \frac{-5}{10} to lowest terms by extracting and canceling out 5.
x^{2}-\frac{1}{2}x=-\frac{3}{5}
Reduce the fraction \frac{-6}{10} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=-\frac{3}{5}+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{3}{5}+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{43}{80}
Add -\frac{3}{5} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{4}\right)^{2}=-\frac{43}{80}
Factor x^{2}-\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{-\frac{43}{80}}
Take the square root of both sides of the equation.
x-\frac{1}{4}=\frac{\sqrt{215}i}{20} x-\frac{1}{4}=-\frac{\sqrt{215}i}{20}
Simplify.
x=\frac{\sqrt{215}i}{20}+\frac{1}{4} x=-\frac{\sqrt{215}i}{20}+\frac{1}{4}
Add \frac{1}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}