Solve for x
x=-\frac{2}{25}=-0.08
x=\frac{1}{5}=0.2
Graph
Share
Copied to clipboard
10x^{2}-\frac{6}{5}x-\frac{4}{25}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{6}{5}\right)±\sqrt{\left(-\frac{6}{5}\right)^{2}-4\times 10\left(-\frac{4}{25}\right)}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, -\frac{6}{5} for b, and -\frac{4}{25} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{6}{5}\right)±\sqrt{\frac{36}{25}-4\times 10\left(-\frac{4}{25}\right)}}{2\times 10}
Square -\frac{6}{5} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{6}{5}\right)±\sqrt{\frac{36}{25}-40\left(-\frac{4}{25}\right)}}{2\times 10}
Multiply -4 times 10.
x=\frac{-\left(-\frac{6}{5}\right)±\sqrt{\frac{36}{25}+\frac{32}{5}}}{2\times 10}
Multiply -40 times -\frac{4}{25}.
x=\frac{-\left(-\frac{6}{5}\right)±\sqrt{\frac{196}{25}}}{2\times 10}
Add \frac{36}{25} to \frac{32}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{6}{5}\right)±\frac{14}{5}}{2\times 10}
Take the square root of \frac{196}{25}.
x=\frac{\frac{6}{5}±\frac{14}{5}}{2\times 10}
The opposite of -\frac{6}{5} is \frac{6}{5}.
x=\frac{\frac{6}{5}±\frac{14}{5}}{20}
Multiply 2 times 10.
x=\frac{4}{20}
Now solve the equation x=\frac{\frac{6}{5}±\frac{14}{5}}{20} when ± is plus. Add \frac{6}{5} to \frac{14}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{1}{5}
Reduce the fraction \frac{4}{20} to lowest terms by extracting and canceling out 4.
x=-\frac{\frac{8}{5}}{20}
Now solve the equation x=\frac{\frac{6}{5}±\frac{14}{5}}{20} when ± is minus. Subtract \frac{14}{5} from \frac{6}{5} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{2}{25}
Divide -\frac{8}{5} by 20.
x=\frac{1}{5} x=-\frac{2}{25}
The equation is now solved.
10x^{2}-\frac{6}{5}x-\frac{4}{25}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
10x^{2}-\frac{6}{5}x-\frac{4}{25}-\left(-\frac{4}{25}\right)=-\left(-\frac{4}{25}\right)
Add \frac{4}{25} to both sides of the equation.
10x^{2}-\frac{6}{5}x=-\left(-\frac{4}{25}\right)
Subtracting -\frac{4}{25} from itself leaves 0.
10x^{2}-\frac{6}{5}x=\frac{4}{25}
Subtract -\frac{4}{25} from 0.
\frac{10x^{2}-\frac{6}{5}x}{10}=\frac{\frac{4}{25}}{10}
Divide both sides by 10.
x^{2}+\left(-\frac{\frac{6}{5}}{10}\right)x=\frac{\frac{4}{25}}{10}
Dividing by 10 undoes the multiplication by 10.
x^{2}-\frac{3}{25}x=\frac{\frac{4}{25}}{10}
Divide -\frac{6}{5} by 10.
x^{2}-\frac{3}{25}x=\frac{2}{125}
Divide \frac{4}{25} by 10.
x^{2}-\frac{3}{25}x+\left(-\frac{3}{50}\right)^{2}=\frac{2}{125}+\left(-\frac{3}{50}\right)^{2}
Divide -\frac{3}{25}, the coefficient of the x term, by 2 to get -\frac{3}{50}. Then add the square of -\frac{3}{50} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{25}x+\frac{9}{2500}=\frac{2}{125}+\frac{9}{2500}
Square -\frac{3}{50} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{25}x+\frac{9}{2500}=\frac{49}{2500}
Add \frac{2}{125} to \frac{9}{2500} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{50}\right)^{2}=\frac{49}{2500}
Factor x^{2}-\frac{3}{25}x+\frac{9}{2500}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{50}\right)^{2}}=\sqrt{\frac{49}{2500}}
Take the square root of both sides of the equation.
x-\frac{3}{50}=\frac{7}{50} x-\frac{3}{50}=-\frac{7}{50}
Simplify.
x=\frac{1}{5} x=-\frac{2}{25}
Add \frac{3}{50} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}