Solve for x
x=\frac{\sqrt{31}+1}{10}\approx 0.656776436
x=\frac{1-\sqrt{31}}{10}\approx -0.456776436
Graph
Share
Copied to clipboard
10x^{2}-2x=3
Subtract 2x from both sides.
10x^{2}-2x-3=0
Subtract 3 from both sides.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 10\left(-3\right)}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, -2 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 10\left(-3\right)}}{2\times 10}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-40\left(-3\right)}}{2\times 10}
Multiply -4 times 10.
x=\frac{-\left(-2\right)±\sqrt{4+120}}{2\times 10}
Multiply -40 times -3.
x=\frac{-\left(-2\right)±\sqrt{124}}{2\times 10}
Add 4 to 120.
x=\frac{-\left(-2\right)±2\sqrt{31}}{2\times 10}
Take the square root of 124.
x=\frac{2±2\sqrt{31}}{2\times 10}
The opposite of -2 is 2.
x=\frac{2±2\sqrt{31}}{20}
Multiply 2 times 10.
x=\frac{2\sqrt{31}+2}{20}
Now solve the equation x=\frac{2±2\sqrt{31}}{20} when ± is plus. Add 2 to 2\sqrt{31}.
x=\frac{\sqrt{31}+1}{10}
Divide 2+2\sqrt{31} by 20.
x=\frac{2-2\sqrt{31}}{20}
Now solve the equation x=\frac{2±2\sqrt{31}}{20} when ± is minus. Subtract 2\sqrt{31} from 2.
x=\frac{1-\sqrt{31}}{10}
Divide 2-2\sqrt{31} by 20.
x=\frac{\sqrt{31}+1}{10} x=\frac{1-\sqrt{31}}{10}
The equation is now solved.
10x^{2}-2x=3
Subtract 2x from both sides.
\frac{10x^{2}-2x}{10}=\frac{3}{10}
Divide both sides by 10.
x^{2}+\left(-\frac{2}{10}\right)x=\frac{3}{10}
Dividing by 10 undoes the multiplication by 10.
x^{2}-\frac{1}{5}x=\frac{3}{10}
Reduce the fraction \frac{-2}{10} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{1}{5}x+\left(-\frac{1}{10}\right)^{2}=\frac{3}{10}+\left(-\frac{1}{10}\right)^{2}
Divide -\frac{1}{5}, the coefficient of the x term, by 2 to get -\frac{1}{10}. Then add the square of -\frac{1}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{5}x+\frac{1}{100}=\frac{3}{10}+\frac{1}{100}
Square -\frac{1}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{5}x+\frac{1}{100}=\frac{31}{100}
Add \frac{3}{10} to \frac{1}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{10}\right)^{2}=\frac{31}{100}
Factor x^{2}-\frac{1}{5}x+\frac{1}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{10}\right)^{2}}=\sqrt{\frac{31}{100}}
Take the square root of both sides of the equation.
x-\frac{1}{10}=\frac{\sqrt{31}}{10} x-\frac{1}{10}=-\frac{\sqrt{31}}{10}
Simplify.
x=\frac{\sqrt{31}+1}{10} x=\frac{1-\sqrt{31}}{10}
Add \frac{1}{10} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}