Solve for x
x = -\frac{5}{2} = -2\frac{1}{2} = -2.5
x=\frac{4}{5}=0.8
Graph
Share
Copied to clipboard
10x^{2}+17x=20
Add 17x to both sides.
10x^{2}+17x-20=0
Subtract 20 from both sides.
a+b=17 ab=10\left(-20\right)=-200
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 10x^{2}+ax+bx-20. To find a and b, set up a system to be solved.
-1,200 -2,100 -4,50 -5,40 -8,25 -10,20
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -200.
-1+200=199 -2+100=98 -4+50=46 -5+40=35 -8+25=17 -10+20=10
Calculate the sum for each pair.
a=-8 b=25
The solution is the pair that gives sum 17.
\left(10x^{2}-8x\right)+\left(25x-20\right)
Rewrite 10x^{2}+17x-20 as \left(10x^{2}-8x\right)+\left(25x-20\right).
2x\left(5x-4\right)+5\left(5x-4\right)
Factor out 2x in the first and 5 in the second group.
\left(5x-4\right)\left(2x+5\right)
Factor out common term 5x-4 by using distributive property.
x=\frac{4}{5} x=-\frac{5}{2}
To find equation solutions, solve 5x-4=0 and 2x+5=0.
10x^{2}+17x=20
Add 17x to both sides.
10x^{2}+17x-20=0
Subtract 20 from both sides.
x=\frac{-17±\sqrt{17^{2}-4\times 10\left(-20\right)}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, 17 for b, and -20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-17±\sqrt{289-4\times 10\left(-20\right)}}{2\times 10}
Square 17.
x=\frac{-17±\sqrt{289-40\left(-20\right)}}{2\times 10}
Multiply -4 times 10.
x=\frac{-17±\sqrt{289+800}}{2\times 10}
Multiply -40 times -20.
x=\frac{-17±\sqrt{1089}}{2\times 10}
Add 289 to 800.
x=\frac{-17±33}{2\times 10}
Take the square root of 1089.
x=\frac{-17±33}{20}
Multiply 2 times 10.
x=\frac{16}{20}
Now solve the equation x=\frac{-17±33}{20} when ± is plus. Add -17 to 33.
x=\frac{4}{5}
Reduce the fraction \frac{16}{20} to lowest terms by extracting and canceling out 4.
x=-\frac{50}{20}
Now solve the equation x=\frac{-17±33}{20} when ± is minus. Subtract 33 from -17.
x=-\frac{5}{2}
Reduce the fraction \frac{-50}{20} to lowest terms by extracting and canceling out 10.
x=\frac{4}{5} x=-\frac{5}{2}
The equation is now solved.
10x^{2}+17x=20
Add 17x to both sides.
\frac{10x^{2}+17x}{10}=\frac{20}{10}
Divide both sides by 10.
x^{2}+\frac{17}{10}x=\frac{20}{10}
Dividing by 10 undoes the multiplication by 10.
x^{2}+\frac{17}{10}x=2
Divide 20 by 10.
x^{2}+\frac{17}{10}x+\left(\frac{17}{20}\right)^{2}=2+\left(\frac{17}{20}\right)^{2}
Divide \frac{17}{10}, the coefficient of the x term, by 2 to get \frac{17}{20}. Then add the square of \frac{17}{20} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{17}{10}x+\frac{289}{400}=2+\frac{289}{400}
Square \frac{17}{20} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{17}{10}x+\frac{289}{400}=\frac{1089}{400}
Add 2 to \frac{289}{400}.
\left(x+\frac{17}{20}\right)^{2}=\frac{1089}{400}
Factor x^{2}+\frac{17}{10}x+\frac{289}{400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{17}{20}\right)^{2}}=\sqrt{\frac{1089}{400}}
Take the square root of both sides of the equation.
x+\frac{17}{20}=\frac{33}{20} x+\frac{17}{20}=-\frac{33}{20}
Simplify.
x=\frac{4}{5} x=-\frac{5}{2}
Subtract \frac{17}{20} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}