Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=33 ab=10\times 20=200
Factor the expression by grouping. First, the expression needs to be rewritten as 10x^{2}+ax+bx+20. To find a and b, set up a system to be solved.
1,200 2,100 4,50 5,40 8,25 10,20
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 200.
1+200=201 2+100=102 4+50=54 5+40=45 8+25=33 10+20=30
Calculate the sum for each pair.
a=8 b=25
The solution is the pair that gives sum 33.
\left(10x^{2}+8x\right)+\left(25x+20\right)
Rewrite 10x^{2}+33x+20 as \left(10x^{2}+8x\right)+\left(25x+20\right).
2x\left(5x+4\right)+5\left(5x+4\right)
Factor out 2x in the first and 5 in the second group.
\left(5x+4\right)\left(2x+5\right)
Factor out common term 5x+4 by using distributive property.
10x^{2}+33x+20=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-33±\sqrt{33^{2}-4\times 10\times 20}}{2\times 10}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-33±\sqrt{1089-4\times 10\times 20}}{2\times 10}
Square 33.
x=\frac{-33±\sqrt{1089-40\times 20}}{2\times 10}
Multiply -4 times 10.
x=\frac{-33±\sqrt{1089-800}}{2\times 10}
Multiply -40 times 20.
x=\frac{-33±\sqrt{289}}{2\times 10}
Add 1089 to -800.
x=\frac{-33±17}{2\times 10}
Take the square root of 289.
x=\frac{-33±17}{20}
Multiply 2 times 10.
x=-\frac{16}{20}
Now solve the equation x=\frac{-33±17}{20} when ± is plus. Add -33 to 17.
x=-\frac{4}{5}
Reduce the fraction \frac{-16}{20} to lowest terms by extracting and canceling out 4.
x=-\frac{50}{20}
Now solve the equation x=\frac{-33±17}{20} when ± is minus. Subtract 17 from -33.
x=-\frac{5}{2}
Reduce the fraction \frac{-50}{20} to lowest terms by extracting and canceling out 10.
10x^{2}+33x+20=10\left(x-\left(-\frac{4}{5}\right)\right)\left(x-\left(-\frac{5}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{4}{5} for x_{1} and -\frac{5}{2} for x_{2}.
10x^{2}+33x+20=10\left(x+\frac{4}{5}\right)\left(x+\frac{5}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
10x^{2}+33x+20=10\times \frac{5x+4}{5}\left(x+\frac{5}{2}\right)
Add \frac{4}{5} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
10x^{2}+33x+20=10\times \frac{5x+4}{5}\times \frac{2x+5}{2}
Add \frac{5}{2} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
10x^{2}+33x+20=10\times \frac{\left(5x+4\right)\left(2x+5\right)}{5\times 2}
Multiply \frac{5x+4}{5} times \frac{2x+5}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
10x^{2}+33x+20=10\times \frac{\left(5x+4\right)\left(2x+5\right)}{10}
Multiply 5 times 2.
10x^{2}+33x+20=\left(5x+4\right)\left(2x+5\right)
Cancel out 10, the greatest common factor in 10 and 10.
x ^ 2 +\frac{33}{10}x +2 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 10
r + s = -\frac{33}{10} rs = 2
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{33}{20} - u s = -\frac{33}{20} + u
Two numbers r and s sum up to -\frac{33}{10} exactly when the average of the two numbers is \frac{1}{2}*-\frac{33}{10} = -\frac{33}{20}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{33}{20} - u) (-\frac{33}{20} + u) = 2
To solve for unknown quantity u, substitute these in the product equation rs = 2
\frac{1089}{400} - u^2 = 2
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 2-\frac{1089}{400} = -\frac{289}{400}
Simplify the expression by subtracting \frac{1089}{400} on both sides
u^2 = \frac{289}{400} u = \pm\sqrt{\frac{289}{400}} = \pm \frac{17}{20}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{33}{20} - \frac{17}{20} = -2.500 s = -\frac{33}{20} + \frac{17}{20} = -0.800
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.