Solve for x
x=\frac{9\sqrt{6}}{10}-\frac{8}{5}\approx 0.604540769
x=-\frac{9\sqrt{6}}{10}-\frac{8}{5}\approx -3.804540769
Graph
Share
Copied to clipboard
10x^{2}+32x-23=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-32±\sqrt{32^{2}-4\times 10\left(-23\right)}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, 32 for b, and -23 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-32±\sqrt{1024-4\times 10\left(-23\right)}}{2\times 10}
Square 32.
x=\frac{-32±\sqrt{1024-40\left(-23\right)}}{2\times 10}
Multiply -4 times 10.
x=\frac{-32±\sqrt{1024+920}}{2\times 10}
Multiply -40 times -23.
x=\frac{-32±\sqrt{1944}}{2\times 10}
Add 1024 to 920.
x=\frac{-32±18\sqrt{6}}{2\times 10}
Take the square root of 1944.
x=\frac{-32±18\sqrt{6}}{20}
Multiply 2 times 10.
x=\frac{18\sqrt{6}-32}{20}
Now solve the equation x=\frac{-32±18\sqrt{6}}{20} when ± is plus. Add -32 to 18\sqrt{6}.
x=\frac{9\sqrt{6}}{10}-\frac{8}{5}
Divide -32+18\sqrt{6} by 20.
x=\frac{-18\sqrt{6}-32}{20}
Now solve the equation x=\frac{-32±18\sqrt{6}}{20} when ± is minus. Subtract 18\sqrt{6} from -32.
x=-\frac{9\sqrt{6}}{10}-\frac{8}{5}
Divide -32-18\sqrt{6} by 20.
x=\frac{9\sqrt{6}}{10}-\frac{8}{5} x=-\frac{9\sqrt{6}}{10}-\frac{8}{5}
The equation is now solved.
10x^{2}+32x-23=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
10x^{2}+32x-23-\left(-23\right)=-\left(-23\right)
Add 23 to both sides of the equation.
10x^{2}+32x=-\left(-23\right)
Subtracting -23 from itself leaves 0.
10x^{2}+32x=23
Subtract -23 from 0.
\frac{10x^{2}+32x}{10}=\frac{23}{10}
Divide both sides by 10.
x^{2}+\frac{32}{10}x=\frac{23}{10}
Dividing by 10 undoes the multiplication by 10.
x^{2}+\frac{16}{5}x=\frac{23}{10}
Reduce the fraction \frac{32}{10} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{16}{5}x+\left(\frac{8}{5}\right)^{2}=\frac{23}{10}+\left(\frac{8}{5}\right)^{2}
Divide \frac{16}{5}, the coefficient of the x term, by 2 to get \frac{8}{5}. Then add the square of \frac{8}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{16}{5}x+\frac{64}{25}=\frac{23}{10}+\frac{64}{25}
Square \frac{8}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{16}{5}x+\frac{64}{25}=\frac{243}{50}
Add \frac{23}{10} to \frac{64}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{8}{5}\right)^{2}=\frac{243}{50}
Factor x^{2}+\frac{16}{5}x+\frac{64}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{8}{5}\right)^{2}}=\sqrt{\frac{243}{50}}
Take the square root of both sides of the equation.
x+\frac{8}{5}=\frac{9\sqrt{6}}{10} x+\frac{8}{5}=-\frac{9\sqrt{6}}{10}
Simplify.
x=\frac{9\sqrt{6}}{10}-\frac{8}{5} x=-\frac{9\sqrt{6}}{10}-\frac{8}{5}
Subtract \frac{8}{5} from both sides of the equation.
x ^ 2 +\frac{16}{5}x -\frac{23}{10} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 10
r + s = -\frac{16}{5} rs = -\frac{23}{10}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{8}{5} - u s = -\frac{8}{5} + u
Two numbers r and s sum up to -\frac{16}{5} exactly when the average of the two numbers is \frac{1}{2}*-\frac{16}{5} = -\frac{8}{5}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{8}{5} - u) (-\frac{8}{5} + u) = -\frac{23}{10}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{23}{10}
\frac{64}{25} - u^2 = -\frac{23}{10}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{23}{10}-\frac{64}{25} = -\frac{243}{50}
Simplify the expression by subtracting \frac{64}{25} on both sides
u^2 = \frac{243}{50} u = \pm\sqrt{\frac{243}{50}} = \pm \frac{\sqrt{243}}{\sqrt{50}}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{8}{5} - \frac{\sqrt{243}}{\sqrt{50}} = -3.805 s = -\frac{8}{5} + \frac{\sqrt{243}}{\sqrt{50}} = 0.605
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}