Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\left(10+9x\right)
Factor out x.
9x^{2}+10x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-10±\sqrt{10^{2}}}{2\times 9}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-10±10}{2\times 9}
Take the square root of 10^{2}.
x=\frac{-10±10}{18}
Multiply 2 times 9.
x=\frac{0}{18}
Now solve the equation x=\frac{-10±10}{18} when ± is plus. Add -10 to 10.
x=0
Divide 0 by 18.
x=-\frac{20}{18}
Now solve the equation x=\frac{-10±10}{18} when ± is minus. Subtract 10 from -10.
x=-\frac{10}{9}
Reduce the fraction \frac{-20}{18} to lowest terms by extracting and canceling out 2.
9x^{2}+10x=9x\left(x-\left(-\frac{10}{9}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -\frac{10}{9} for x_{2}.
9x^{2}+10x=9x\left(x+\frac{10}{9}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
9x^{2}+10x=9x\times \frac{9x+10}{9}
Add \frac{10}{9} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
9x^{2}+10x=x\left(9x+10\right)
Cancel out 9, the greatest common factor in 9 and 9.