Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

100x+30x^{2}+\left(10+6x\right)^{2}=1150
Multiply both sides of the equation by 10.
100x+30x^{2}+100+120x+36x^{2}=1150
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(10+6x\right)^{2}.
220x+30x^{2}+100+36x^{2}=1150
Combine 100x and 120x to get 220x.
220x+66x^{2}+100=1150
Combine 30x^{2} and 36x^{2} to get 66x^{2}.
220x+66x^{2}+100-1150=0
Subtract 1150 from both sides.
220x+66x^{2}-1050=0
Subtract 1150 from 100 to get -1050.
66x^{2}+220x-1050=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-220±\sqrt{220^{2}-4\times 66\left(-1050\right)}}{2\times 66}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 66 for a, 220 for b, and -1050 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-220±\sqrt{48400-4\times 66\left(-1050\right)}}{2\times 66}
Square 220.
x=\frac{-220±\sqrt{48400-264\left(-1050\right)}}{2\times 66}
Multiply -4 times 66.
x=\frac{-220±\sqrt{48400+277200}}{2\times 66}
Multiply -264 times -1050.
x=\frac{-220±\sqrt{325600}}{2\times 66}
Add 48400 to 277200.
x=\frac{-220±20\sqrt{814}}{2\times 66}
Take the square root of 325600.
x=\frac{-220±20\sqrt{814}}{132}
Multiply 2 times 66.
x=\frac{20\sqrt{814}-220}{132}
Now solve the equation x=\frac{-220±20\sqrt{814}}{132} when ± is plus. Add -220 to 20\sqrt{814}.
x=\frac{5\sqrt{814}}{33}-\frac{5}{3}
Divide -220+20\sqrt{814} by 132.
x=\frac{-20\sqrt{814}-220}{132}
Now solve the equation x=\frac{-220±20\sqrt{814}}{132} when ± is minus. Subtract 20\sqrt{814} from -220.
x=-\frac{5\sqrt{814}}{33}-\frac{5}{3}
Divide -220-20\sqrt{814} by 132.
x=\frac{5\sqrt{814}}{33}-\frac{5}{3} x=-\frac{5\sqrt{814}}{33}-\frac{5}{3}
The equation is now solved.
100x+30x^{2}+\left(10+6x\right)^{2}=1150
Multiply both sides of the equation by 10.
100x+30x^{2}+100+120x+36x^{2}=1150
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(10+6x\right)^{2}.
220x+30x^{2}+100+36x^{2}=1150
Combine 100x and 120x to get 220x.
220x+66x^{2}+100=1150
Combine 30x^{2} and 36x^{2} to get 66x^{2}.
220x+66x^{2}=1150-100
Subtract 100 from both sides.
220x+66x^{2}=1050
Subtract 100 from 1150 to get 1050.
66x^{2}+220x=1050
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{66x^{2}+220x}{66}=\frac{1050}{66}
Divide both sides by 66.
x^{2}+\frac{220}{66}x=\frac{1050}{66}
Dividing by 66 undoes the multiplication by 66.
x^{2}+\frac{10}{3}x=\frac{1050}{66}
Reduce the fraction \frac{220}{66} to lowest terms by extracting and canceling out 22.
x^{2}+\frac{10}{3}x=\frac{175}{11}
Reduce the fraction \frac{1050}{66} to lowest terms by extracting and canceling out 6.
x^{2}+\frac{10}{3}x+\left(\frac{5}{3}\right)^{2}=\frac{175}{11}+\left(\frac{5}{3}\right)^{2}
Divide \frac{10}{3}, the coefficient of the x term, by 2 to get \frac{5}{3}. Then add the square of \frac{5}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{10}{3}x+\frac{25}{9}=\frac{175}{11}+\frac{25}{9}
Square \frac{5}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{10}{3}x+\frac{25}{9}=\frac{1850}{99}
Add \frac{175}{11} to \frac{25}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{3}\right)^{2}=\frac{1850}{99}
Factor x^{2}+\frac{10}{3}x+\frac{25}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{3}\right)^{2}}=\sqrt{\frac{1850}{99}}
Take the square root of both sides of the equation.
x+\frac{5}{3}=\frac{5\sqrt{814}}{33} x+\frac{5}{3}=-\frac{5\sqrt{814}}{33}
Simplify.
x=\frac{5\sqrt{814}}{33}-\frac{5}{3} x=-\frac{5\sqrt{814}}{33}-\frac{5}{3}
Subtract \frac{5}{3} from both sides of the equation.