Solve for x
x=\frac{\sqrt{5}-11}{2}\approx -4.381966011
x=\frac{-\sqrt{5}-11}{2}\approx -6.618033989
Graph
Share
Copied to clipboard
10x+27-\left(-2\right)=-x-x^{2}
Subtract -2 from both sides.
10x+27+2=-x-x^{2}
The opposite of -2 is 2.
10x+27+2+x=-x^{2}
Add x to both sides.
10x+29+x=-x^{2}
Add 27 and 2 to get 29.
11x+29=-x^{2}
Combine 10x and x to get 11x.
11x+29+x^{2}=0
Add x^{2} to both sides.
x^{2}+11x+29=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-11±\sqrt{11^{2}-4\times 29}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 11 for b, and 29 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11±\sqrt{121-4\times 29}}{2}
Square 11.
x=\frac{-11±\sqrt{121-116}}{2}
Multiply -4 times 29.
x=\frac{-11±\sqrt{5}}{2}
Add 121 to -116.
x=\frac{\sqrt{5}-11}{2}
Now solve the equation x=\frac{-11±\sqrt{5}}{2} when ± is plus. Add -11 to \sqrt{5}.
x=\frac{-\sqrt{5}-11}{2}
Now solve the equation x=\frac{-11±\sqrt{5}}{2} when ± is minus. Subtract \sqrt{5} from -11.
x=\frac{\sqrt{5}-11}{2} x=\frac{-\sqrt{5}-11}{2}
The equation is now solved.
10x+27+x=-2-x^{2}
Add x to both sides.
11x+27=-2-x^{2}
Combine 10x and x to get 11x.
11x+27+x^{2}=-2
Add x^{2} to both sides.
11x+x^{2}=-2-27
Subtract 27 from both sides.
11x+x^{2}=-29
Subtract 27 from -2 to get -29.
x^{2}+11x=-29
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+11x+\left(\frac{11}{2}\right)^{2}=-29+\left(\frac{11}{2}\right)^{2}
Divide 11, the coefficient of the x term, by 2 to get \frac{11}{2}. Then add the square of \frac{11}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+11x+\frac{121}{4}=-29+\frac{121}{4}
Square \frac{11}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+11x+\frac{121}{4}=\frac{5}{4}
Add -29 to \frac{121}{4}.
\left(x+\frac{11}{2}\right)^{2}=\frac{5}{4}
Factor x^{2}+11x+\frac{121}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{2}\right)^{2}}=\sqrt{\frac{5}{4}}
Take the square root of both sides of the equation.
x+\frac{11}{2}=\frac{\sqrt{5}}{2} x+\frac{11}{2}=-\frac{\sqrt{5}}{2}
Simplify.
x=\frac{\sqrt{5}-11}{2} x=\frac{-\sqrt{5}-11}{2}
Subtract \frac{11}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}