Solve for x
x = \frac{\sqrt{17501105} + 3985}{2} \approx 4084.216101673
x=\frac{3985-\sqrt{17501105}}{2}\approx -99.216101673
Graph
Share
Copied to clipboard
10x+x^{2}-3995x-20000=385220
Use the distributive property to multiply x+5 by x-4000 and combine like terms.
-3985x+x^{2}-20000=385220
Combine 10x and -3995x to get -3985x.
-3985x+x^{2}-20000-385220=0
Subtract 385220 from both sides.
-3985x+x^{2}-405220=0
Subtract 385220 from -20000 to get -405220.
x^{2}-3985x-405220=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3985\right)±\sqrt{\left(-3985\right)^{2}-4\left(-405220\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -3985 for b, and -405220 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3985\right)±\sqrt{15880225-4\left(-405220\right)}}{2}
Square -3985.
x=\frac{-\left(-3985\right)±\sqrt{15880225+1620880}}{2}
Multiply -4 times -405220.
x=\frac{-\left(-3985\right)±\sqrt{17501105}}{2}
Add 15880225 to 1620880.
x=\frac{3985±\sqrt{17501105}}{2}
The opposite of -3985 is 3985.
x=\frac{\sqrt{17501105}+3985}{2}
Now solve the equation x=\frac{3985±\sqrt{17501105}}{2} when ± is plus. Add 3985 to \sqrt{17501105}.
x=\frac{3985-\sqrt{17501105}}{2}
Now solve the equation x=\frac{3985±\sqrt{17501105}}{2} when ± is minus. Subtract \sqrt{17501105} from 3985.
x=\frac{\sqrt{17501105}+3985}{2} x=\frac{3985-\sqrt{17501105}}{2}
The equation is now solved.
10x+x^{2}-3995x-20000=385220
Use the distributive property to multiply x+5 by x-4000 and combine like terms.
-3985x+x^{2}-20000=385220
Combine 10x and -3995x to get -3985x.
-3985x+x^{2}=385220+20000
Add 20000 to both sides.
-3985x+x^{2}=405220
Add 385220 and 20000 to get 405220.
x^{2}-3985x=405220
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-3985x+\left(-\frac{3985}{2}\right)^{2}=405220+\left(-\frac{3985}{2}\right)^{2}
Divide -3985, the coefficient of the x term, by 2 to get -\frac{3985}{2}. Then add the square of -\frac{3985}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3985x+\frac{15880225}{4}=405220+\frac{15880225}{4}
Square -\frac{3985}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3985x+\frac{15880225}{4}=\frac{17501105}{4}
Add 405220 to \frac{15880225}{4}.
\left(x-\frac{3985}{2}\right)^{2}=\frac{17501105}{4}
Factor x^{2}-3985x+\frac{15880225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3985}{2}\right)^{2}}=\sqrt{\frac{17501105}{4}}
Take the square root of both sides of the equation.
x-\frac{3985}{2}=\frac{\sqrt{17501105}}{2} x-\frac{3985}{2}=-\frac{\sqrt{17501105}}{2}
Simplify.
x=\frac{\sqrt{17501105}+3985}{2} x=\frac{3985-\sqrt{17501105}}{2}
Add \frac{3985}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}