Factor
2\left(w+3\right)\left(5w+1\right)w^{2}
Evaluate
2\left(w+3\right)\left(5w+1\right)w^{2}
Share
Copied to clipboard
2\left(5w^{4}+16w^{3}+3w^{2}\right)
Factor out 2.
w^{2}\left(5w^{2}+16w+3\right)
Consider 5w^{4}+16w^{3}+3w^{2}. Factor out w^{2}.
a+b=16 ab=5\times 3=15
Consider 5w^{2}+16w+3. Factor the expression by grouping. First, the expression needs to be rewritten as 5w^{2}+aw+bw+3. To find a and b, set up a system to be solved.
1,15 3,5
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 15.
1+15=16 3+5=8
Calculate the sum for each pair.
a=1 b=15
The solution is the pair that gives sum 16.
\left(5w^{2}+w\right)+\left(15w+3\right)
Rewrite 5w^{2}+16w+3 as \left(5w^{2}+w\right)+\left(15w+3\right).
w\left(5w+1\right)+3\left(5w+1\right)
Factor out w in the first and 3 in the second group.
\left(5w+1\right)\left(w+3\right)
Factor out common term 5w+1 by using distributive property.
2w^{2}\left(5w+1\right)\left(w+3\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}