Solve for v
v=1+\sqrt{3}i\approx 1+1.732050808i
v=-\sqrt{3}i+1\approx 1-1.732050808i
Share
Copied to clipboard
10v^{2}-20v+43=3
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
10v^{2}-20v+43-3=3-3
Subtract 3 from both sides of the equation.
10v^{2}-20v+43-3=0
Subtracting 3 from itself leaves 0.
10v^{2}-20v+40=0
Subtract 3 from 43.
v=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 10\times 40}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, -20 for b, and 40 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v=\frac{-\left(-20\right)±\sqrt{400-4\times 10\times 40}}{2\times 10}
Square -20.
v=\frac{-\left(-20\right)±\sqrt{400-40\times 40}}{2\times 10}
Multiply -4 times 10.
v=\frac{-\left(-20\right)±\sqrt{400-1600}}{2\times 10}
Multiply -40 times 40.
v=\frac{-\left(-20\right)±\sqrt{-1200}}{2\times 10}
Add 400 to -1600.
v=\frac{-\left(-20\right)±20\sqrt{3}i}{2\times 10}
Take the square root of -1200.
v=\frac{20±20\sqrt{3}i}{2\times 10}
The opposite of -20 is 20.
v=\frac{20±20\sqrt{3}i}{20}
Multiply 2 times 10.
v=\frac{20+20\sqrt{3}i}{20}
Now solve the equation v=\frac{20±20\sqrt{3}i}{20} when ± is plus. Add 20 to 20i\sqrt{3}.
v=1+\sqrt{3}i
Divide 20+20i\sqrt{3} by 20.
v=\frac{-20\sqrt{3}i+20}{20}
Now solve the equation v=\frac{20±20\sqrt{3}i}{20} when ± is minus. Subtract 20i\sqrt{3} from 20.
v=-\sqrt{3}i+1
Divide 20-20i\sqrt{3} by 20.
v=1+\sqrt{3}i v=-\sqrt{3}i+1
The equation is now solved.
10v^{2}-20v+43=3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
10v^{2}-20v+43-43=3-43
Subtract 43 from both sides of the equation.
10v^{2}-20v=3-43
Subtracting 43 from itself leaves 0.
10v^{2}-20v=-40
Subtract 43 from 3.
\frac{10v^{2}-20v}{10}=-\frac{40}{10}
Divide both sides by 10.
v^{2}+\left(-\frac{20}{10}\right)v=-\frac{40}{10}
Dividing by 10 undoes the multiplication by 10.
v^{2}-2v=-\frac{40}{10}
Divide -20 by 10.
v^{2}-2v=-4
Divide -40 by 10.
v^{2}-2v+1=-4+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
v^{2}-2v+1=-3
Add -4 to 1.
\left(v-1\right)^{2}=-3
Factor v^{2}-2v+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(v-1\right)^{2}}=\sqrt{-3}
Take the square root of both sides of the equation.
v-1=\sqrt{3}i v-1=-\sqrt{3}i
Simplify.
v=1+\sqrt{3}i v=-\sqrt{3}i+1
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}