Factor
5\left(2u-5\right)\left(u+1\right)u^{5}
Evaluate
5\left(2u-5\right)\left(u+1\right)u^{5}
Share
Copied to clipboard
5\left(2u^{7}-3u^{6}-5u^{5}\right)
Factor out 5.
u^{5}\left(2u^{2}-3u-5\right)
Consider 2u^{7}-3u^{6}-5u^{5}. Factor out u^{5}.
a+b=-3 ab=2\left(-5\right)=-10
Consider 2u^{2}-3u-5. Factor the expression by grouping. First, the expression needs to be rewritten as 2u^{2}+au+bu-5. To find a and b, set up a system to be solved.
1,-10 2,-5
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -10.
1-10=-9 2-5=-3
Calculate the sum for each pair.
a=-5 b=2
The solution is the pair that gives sum -3.
\left(2u^{2}-5u\right)+\left(2u-5\right)
Rewrite 2u^{2}-3u-5 as \left(2u^{2}-5u\right)+\left(2u-5\right).
u\left(2u-5\right)+2u-5
Factor out u in 2u^{2}-5u.
\left(2u-5\right)\left(u+1\right)
Factor out common term 2u-5 by using distributive property.
5u^{5}\left(2u-5\right)\left(u+1\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}