Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

2\left(5q^{2}+6q\right)
Factor out 2.
q\left(5q+6\right)
Consider 5q^{2}+6q. Factor out q.
2q\left(5q+6\right)
Rewrite the complete factored expression.
10q^{2}+12q=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
q=\frac{-12±\sqrt{12^{2}}}{2\times 10}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
q=\frac{-12±12}{2\times 10}
Take the square root of 12^{2}.
q=\frac{-12±12}{20}
Multiply 2 times 10.
q=\frac{0}{20}
Now solve the equation q=\frac{-12±12}{20} when ± is plus. Add -12 to 12.
q=0
Divide 0 by 20.
q=-\frac{24}{20}
Now solve the equation q=\frac{-12±12}{20} when ± is minus. Subtract 12 from -12.
q=-\frac{6}{5}
Reduce the fraction \frac{-24}{20} to lowest terms by extracting and canceling out 4.
10q^{2}+12q=10q\left(q-\left(-\frac{6}{5}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -\frac{6}{5} for x_{2}.
10q^{2}+12q=10q\left(q+\frac{6}{5}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
10q^{2}+12q=10q\times \frac{5q+6}{5}
Add \frac{6}{5} to q by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
10q^{2}+12q=2q\left(5q+6\right)
Cancel out 5, the greatest common factor in 10 and 5.