Solve for p
p=\frac{3\sqrt{235}i}{10}+\frac{1}{2}\approx 0.5+4.598912915i
p=-\frac{3\sqrt{235}i}{10}+\frac{1}{2}\approx 0.5-4.598912915i
Share
Copied to clipboard
-10p^{2}+10p=214
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-10p^{2}+10p-214=214-214
Subtract 214 from both sides of the equation.
-10p^{2}+10p-214=0
Subtracting 214 from itself leaves 0.
p=\frac{-10±\sqrt{10^{2}-4\left(-10\right)\left(-214\right)}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, 10 for b, and -214 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-10±\sqrt{100-4\left(-10\right)\left(-214\right)}}{2\left(-10\right)}
Square 10.
p=\frac{-10±\sqrt{100+40\left(-214\right)}}{2\left(-10\right)}
Multiply -4 times -10.
p=\frac{-10±\sqrt{100-8560}}{2\left(-10\right)}
Multiply 40 times -214.
p=\frac{-10±\sqrt{-8460}}{2\left(-10\right)}
Add 100 to -8560.
p=\frac{-10±6\sqrt{235}i}{2\left(-10\right)}
Take the square root of -8460.
p=\frac{-10±6\sqrt{235}i}{-20}
Multiply 2 times -10.
p=\frac{-10+6\sqrt{235}i}{-20}
Now solve the equation p=\frac{-10±6\sqrt{235}i}{-20} when ± is plus. Add -10 to 6i\sqrt{235}.
p=-\frac{3\sqrt{235}i}{10}+\frac{1}{2}
Divide -10+6i\sqrt{235} by -20.
p=\frac{-6\sqrt{235}i-10}{-20}
Now solve the equation p=\frac{-10±6\sqrt{235}i}{-20} when ± is minus. Subtract 6i\sqrt{235} from -10.
p=\frac{3\sqrt{235}i}{10}+\frac{1}{2}
Divide -10-6i\sqrt{235} by -20.
p=-\frac{3\sqrt{235}i}{10}+\frac{1}{2} p=\frac{3\sqrt{235}i}{10}+\frac{1}{2}
The equation is now solved.
-10p^{2}+10p=214
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-10p^{2}+10p}{-10}=\frac{214}{-10}
Divide both sides by -10.
p^{2}+\frac{10}{-10}p=\frac{214}{-10}
Dividing by -10 undoes the multiplication by -10.
p^{2}-p=\frac{214}{-10}
Divide 10 by -10.
p^{2}-p=-\frac{107}{5}
Reduce the fraction \frac{214}{-10} to lowest terms by extracting and canceling out 2.
p^{2}-p+\left(-\frac{1}{2}\right)^{2}=-\frac{107}{5}+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
p^{2}-p+\frac{1}{4}=-\frac{107}{5}+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
p^{2}-p+\frac{1}{4}=-\frac{423}{20}
Add -\frac{107}{5} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(p-\frac{1}{2}\right)^{2}=-\frac{423}{20}
Factor p^{2}-p+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{423}{20}}
Take the square root of both sides of the equation.
p-\frac{1}{2}=\frac{3\sqrt{235}i}{10} p-\frac{1}{2}=-\frac{3\sqrt{235}i}{10}
Simplify.
p=\frac{3\sqrt{235}i}{10}+\frac{1}{2} p=-\frac{3\sqrt{235}i}{10}+\frac{1}{2}
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}