Solve for d
d=\frac{5ms}{7}
Solve for m
\left\{\begin{matrix}m=\frac{7d}{5s}\text{, }&s\neq 0\\m\in \mathrm{R}\text{, }&d=0\text{ and }s=0\end{matrix}\right.
Share
Copied to clipboard
10ms=\sqrt{196}d
Multiply 2 and 98 to get 196.
10ms=14d
Calculate the square root of 196 and get 14.
14d=10ms
Swap sides so that all variable terms are on the left hand side.
\frac{14d}{14}=\frac{10ms}{14}
Divide both sides by 14.
d=\frac{10ms}{14}
Dividing by 14 undoes the multiplication by 14.
d=\frac{5ms}{7}
Divide 10ms by 14.
10ms=\sqrt{196}d
Multiply 2 and 98 to get 196.
10ms=14d
Calculate the square root of 196 and get 14.
10sm=14d
The equation is in standard form.
\frac{10sm}{10s}=\frac{14d}{10s}
Divide both sides by 10s.
m=\frac{14d}{10s}
Dividing by 10s undoes the multiplication by 10s.
m=\frac{7d}{5s}
Divide 14d by 10s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}