Solve for m
\left\{\begin{matrix}m=\frac{q}{10\left(n-p\right)}\text{, }&n\neq p\\m\in \mathrm{R}\text{, }&q=0\text{ and }n=p\end{matrix}\right.
Solve for n
\left\{\begin{matrix}n=p+\frac{q}{10m}\text{, }&m\neq 0\\n\in \mathrm{R}\text{, }&q=0\text{ and }m=0\end{matrix}\right.
Share
Copied to clipboard
10mn-10mp=q
Use the distributive property to multiply 10m by n-p.
\left(10n-10p\right)m=q
Combine all terms containing m.
\frac{\left(10n-10p\right)m}{10n-10p}=\frac{q}{10n-10p}
Divide both sides by 10n-10p.
m=\frac{q}{10n-10p}
Dividing by 10n-10p undoes the multiplication by 10n-10p.
m=\frac{q}{10\left(n-p\right)}
Divide q by 10n-10p.
10mn-10mp=q
Use the distributive property to multiply 10m by n-p.
10mn=q+10mp
Add 10mp to both sides.
10mn=10mp+q
The equation is in standard form.
\frac{10mn}{10m}=\frac{10mp+q}{10m}
Divide both sides by 10m.
n=\frac{10mp+q}{10m}
Dividing by 10m undoes the multiplication by 10m.
n=p+\frac{q}{10m}
Divide q+10mp by 10m.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}