Solve for m
m = \frac{\sqrt{71} - 1}{5} \approx 1.485229955
m=\frac{-\sqrt{71}-1}{5}\approx -1.885229955
Share
Copied to clipboard
45m^{2}+18m-126=0
Combine 10m^{2} and 35m^{2} to get 45m^{2}.
m=\frac{-18±\sqrt{18^{2}-4\times 45\left(-126\right)}}{2\times 45}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 45 for a, 18 for b, and -126 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-18±\sqrt{324-4\times 45\left(-126\right)}}{2\times 45}
Square 18.
m=\frac{-18±\sqrt{324-180\left(-126\right)}}{2\times 45}
Multiply -4 times 45.
m=\frac{-18±\sqrt{324+22680}}{2\times 45}
Multiply -180 times -126.
m=\frac{-18±\sqrt{23004}}{2\times 45}
Add 324 to 22680.
m=\frac{-18±18\sqrt{71}}{2\times 45}
Take the square root of 23004.
m=\frac{-18±18\sqrt{71}}{90}
Multiply 2 times 45.
m=\frac{18\sqrt{71}-18}{90}
Now solve the equation m=\frac{-18±18\sqrt{71}}{90} when ± is plus. Add -18 to 18\sqrt{71}.
m=\frac{\sqrt{71}-1}{5}
Divide -18+18\sqrt{71} by 90.
m=\frac{-18\sqrt{71}-18}{90}
Now solve the equation m=\frac{-18±18\sqrt{71}}{90} when ± is minus. Subtract 18\sqrt{71} from -18.
m=\frac{-\sqrt{71}-1}{5}
Divide -18-18\sqrt{71} by 90.
m=\frac{\sqrt{71}-1}{5} m=\frac{-\sqrt{71}-1}{5}
The equation is now solved.
45m^{2}+18m-126=0
Combine 10m^{2} and 35m^{2} to get 45m^{2}.
45m^{2}+18m=126
Add 126 to both sides. Anything plus zero gives itself.
\frac{45m^{2}+18m}{45}=\frac{126}{45}
Divide both sides by 45.
m^{2}+\frac{18}{45}m=\frac{126}{45}
Dividing by 45 undoes the multiplication by 45.
m^{2}+\frac{2}{5}m=\frac{126}{45}
Reduce the fraction \frac{18}{45} to lowest terms by extracting and canceling out 9.
m^{2}+\frac{2}{5}m=\frac{14}{5}
Reduce the fraction \frac{126}{45} to lowest terms by extracting and canceling out 9.
m^{2}+\frac{2}{5}m+\left(\frac{1}{5}\right)^{2}=\frac{14}{5}+\left(\frac{1}{5}\right)^{2}
Divide \frac{2}{5}, the coefficient of the x term, by 2 to get \frac{1}{5}. Then add the square of \frac{1}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}+\frac{2}{5}m+\frac{1}{25}=\frac{14}{5}+\frac{1}{25}
Square \frac{1}{5} by squaring both the numerator and the denominator of the fraction.
m^{2}+\frac{2}{5}m+\frac{1}{25}=\frac{71}{25}
Add \frac{14}{5} to \frac{1}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(m+\frac{1}{5}\right)^{2}=\frac{71}{25}
Factor m^{2}+\frac{2}{5}m+\frac{1}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m+\frac{1}{5}\right)^{2}}=\sqrt{\frac{71}{25}}
Take the square root of both sides of the equation.
m+\frac{1}{5}=\frac{\sqrt{71}}{5} m+\frac{1}{5}=-\frac{\sqrt{71}}{5}
Simplify.
m=\frac{\sqrt{71}-1}{5} m=\frac{-\sqrt{71}-1}{5}
Subtract \frac{1}{5} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}