Solve for m
m = -\frac{63}{10} = -6\frac{3}{10} = -6.3
m=1
Share
Copied to clipboard
10m^{2}+53m-63=0
Combine 35m and 18m to get 53m.
a+b=53 ab=10\left(-63\right)=-630
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 10m^{2}+am+bm-63. To find a and b, set up a system to be solved.
-1,630 -2,315 -3,210 -5,126 -6,105 -7,90 -9,70 -10,63 -14,45 -15,42 -18,35 -21,30
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -630.
-1+630=629 -2+315=313 -3+210=207 -5+126=121 -6+105=99 -7+90=83 -9+70=61 -10+63=53 -14+45=31 -15+42=27 -18+35=17 -21+30=9
Calculate the sum for each pair.
a=-10 b=63
The solution is the pair that gives sum 53.
\left(10m^{2}-10m\right)+\left(63m-63\right)
Rewrite 10m^{2}+53m-63 as \left(10m^{2}-10m\right)+\left(63m-63\right).
10m\left(m-1\right)+63\left(m-1\right)
Factor out 10m in the first and 63 in the second group.
\left(m-1\right)\left(10m+63\right)
Factor out common term m-1 by using distributive property.
m=1 m=-\frac{63}{10}
To find equation solutions, solve m-1=0 and 10m+63=0.
10m^{2}+53m-63=0
Combine 35m and 18m to get 53m.
m=\frac{-53±\sqrt{53^{2}-4\times 10\left(-63\right)}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, 53 for b, and -63 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-53±\sqrt{2809-4\times 10\left(-63\right)}}{2\times 10}
Square 53.
m=\frac{-53±\sqrt{2809-40\left(-63\right)}}{2\times 10}
Multiply -4 times 10.
m=\frac{-53±\sqrt{2809+2520}}{2\times 10}
Multiply -40 times -63.
m=\frac{-53±\sqrt{5329}}{2\times 10}
Add 2809 to 2520.
m=\frac{-53±73}{2\times 10}
Take the square root of 5329.
m=\frac{-53±73}{20}
Multiply 2 times 10.
m=\frac{20}{20}
Now solve the equation m=\frac{-53±73}{20} when ± is plus. Add -53 to 73.
m=1
Divide 20 by 20.
m=-\frac{126}{20}
Now solve the equation m=\frac{-53±73}{20} when ± is minus. Subtract 73 from -53.
m=-\frac{63}{10}
Reduce the fraction \frac{-126}{20} to lowest terms by extracting and canceling out 2.
m=1 m=-\frac{63}{10}
The equation is now solved.
10m^{2}+53m-63=0
Combine 35m and 18m to get 53m.
10m^{2}+53m=63
Add 63 to both sides. Anything plus zero gives itself.
\frac{10m^{2}+53m}{10}=\frac{63}{10}
Divide both sides by 10.
m^{2}+\frac{53}{10}m=\frac{63}{10}
Dividing by 10 undoes the multiplication by 10.
m^{2}+\frac{53}{10}m+\left(\frac{53}{20}\right)^{2}=\frac{63}{10}+\left(\frac{53}{20}\right)^{2}
Divide \frac{53}{10}, the coefficient of the x term, by 2 to get \frac{53}{20}. Then add the square of \frac{53}{20} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}+\frac{53}{10}m+\frac{2809}{400}=\frac{63}{10}+\frac{2809}{400}
Square \frac{53}{20} by squaring both the numerator and the denominator of the fraction.
m^{2}+\frac{53}{10}m+\frac{2809}{400}=\frac{5329}{400}
Add \frac{63}{10} to \frac{2809}{400} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(m+\frac{53}{20}\right)^{2}=\frac{5329}{400}
Factor m^{2}+\frac{53}{10}m+\frac{2809}{400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m+\frac{53}{20}\right)^{2}}=\sqrt{\frac{5329}{400}}
Take the square root of both sides of the equation.
m+\frac{53}{20}=\frac{73}{20} m+\frac{53}{20}=-\frac{73}{20}
Simplify.
m=1 m=-\frac{63}{10}
Subtract \frac{53}{20} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}